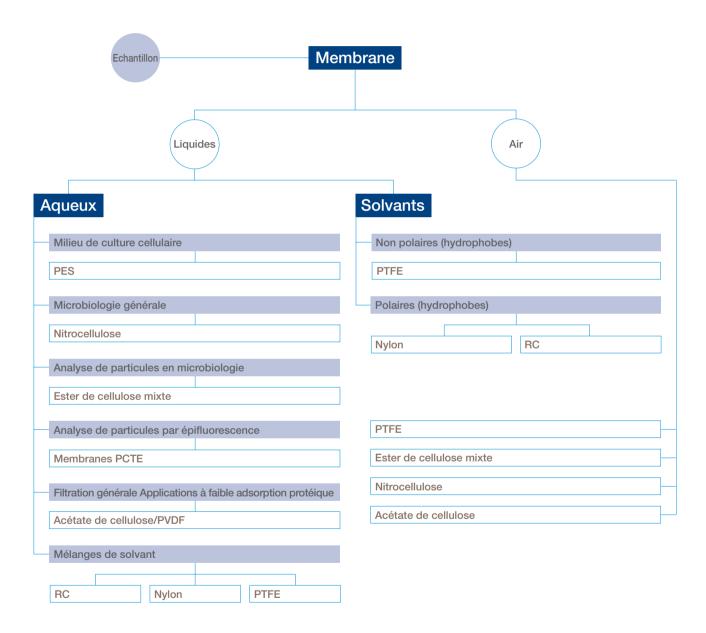
Information Achat - Supports de filtres plastiques Pop-Top et Swin-Lok				
Diamètre (mm)	Description	Référence	Conditionnement	
13	Pop-Top	420100	10	
25	Support Swin-Lok	420200	10	
47	Support Swin-Lok	420400	10	

GMF 150, le préfiltre idéal

Lorsqu'elle fait appel à des membranes, la filtration de routine débouche souvent sur un colmatage rapide des pores de surface. En conséquence, on assiste très vite à une diminution de la vitesse de filtration et du volume d'échantillon à filtrer. Des tests ont prouvé que le GMF150 Whatman, utilisé comme préfiltre, double quasiment le volume d'échantillon filtré en comparaison avec un préfiltre de densité simple. Comparé à une membrane non protégée, le volume d'échantillon filtré est trois à sept fois plus important. Les préfiltres conventionnels ne peuvent pas rivaliser avec le GMF150 Whatman simplement parce que les préfiltres de densité uniforme n'ont pas la capacité de charge offerte par la technologie de filtration multicouche mise au point par Whatman.

Information Achat - Disques multigrade GMF 150				
Seuil de filtration Diamètre (mm)	1 μm	2 μm	Conditionnement	
47	1841-047	1842-047	40	
90	1841-090	1842-090	20	

Les articles ci-dessus sont disponibles sur commande spéciale en Europe, Amérique du Sud, Afrique et au Moyen-Orient


Membranes filtrantes

Whatman met à la portée des utilisateurs de laboratoire une gamme de membranes filtrantes dotées de spécifications techniques avancées qui en font le choix privilégié parmi un large éventail d'applications. Les membranes filtrantes offrent une distribution précisément contrôlée de la taille des pores et une meilleure résistance et flexibilité assurant la reproductibilité et la consistance des résultats. La gamme de membranes filtrantes Whatman comprend seuils de filtration(de 0,02 à 12 µm) ainsi qu'une large sélection de matériaux. Des versions stériles et autoclavées sont disponibles pour les applications spéciales, tout comme des types colorés et quadrillés.

Papiers et membranes de filtration

Tableau de référence pour la sélection rapide

Propriétés caractéristiques - Membranes						
Média	Matériau	Seuil de filtration (µm)	Diamètre (mm)	Rectangulaire	Nom commercial	
Membranes de type	Polyester -	0.2, 0.4, 1.0	25	-	Cyclopore	
"track etched"	Téréphtalate de				Nuclepore	
	polyéthylène					
	Polycarbonate -	0.015, 0.03, 0.05, 0.08,	13, 25, 37,	8 x 10 mm		
	(4, 4 hydroxydiphényl-	0.1, 0.2, 0.4, 0.6, 0.8,	47, 50, 76,	19 x 42 mm		
	2,2'-propane)	1.0, 2.0, 3.0, 5.0, 8.0,	90, 142	25 x 80 mm		
		10.0, 12.0		8" x 10"		
Membranes en cellulose	Nitrate de cellulose	0.45, 0.8, 1.0, 3.0,	25, 47, 90	-	-	
		5.0, 6.0				
	Esters de cellulose mixte -	0.22, 0.45, 0.65, 0.8,	13, 25, 47,	19 x 42 mm	Membra-Fil	
	Esters mixtes (acétate	1.2, 3.0, 5.0	90, 142		Marque Whatman	
	et nitrate de cellulose)					
	Cellulose	0.2, 0.45, 1.0	25, 47, 50,			
	régénérée		100, 110, 142			
Nylon	Polymère	0.2, 0.45, 0.8	13, 25, 47,	-	-	
	(Héxaméthylène-					
	diamine; Nylon 66)		90			
PTFE	Polytétrafluoroéthylène	0.2, 0.5, 1.0	25, 47	-	-	
Polypropylène	Polypropylène	0.2, 0.45, 1.0	25, 47, 90	-	-	
Anopore	Oxyde d'aluminium	0.02, 0.1, 0.2	13, 21, 43	-	Anopore	
					Anodisc	
PES	Polyéthersulfone	0.8	47	-	-	

Membranes inorganiques Anopore®

La membrane inorganique Anopore est idéale pour un large éventail d'applications de filtration en laboratoire. Ce matériau unique possède une structure de pores en nids d'abeille précise et indéformable sans passages latéraux entre chaque pores. Il filtre au seuil précisément spécifié, ne permettant pas aux particules de tailles plus grandes de passer à travers la membrane. La membrane inorganique Anopore est composée d'une matrice en alumine de haute pureté, fabriquée par procédés électrochimiques. La membrane présente également un faible taux d'adsorption protéique et une auto fluorescence minimale. Elle est non toxique et compatible avec la croissance cellulaire.

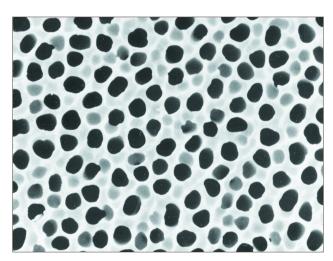
La structure précise et la distribution serrée de la taille des pores dela membrane Anopore assure une efficacité élevée d'élimination de particules. Les micro-organismes et particules sont capturés à la surface de la membrane pour être analysés ultérieurement par microscopie optique ou électronique. Une fois mouillée, la membrane est virtuellement transparente de sorte que les particules retenues n'ont pas besoin d'être transférées sur une autre surface avant l'examen au microscope.

Papiers et membranes de filtration

La membrane est hydrophile et compatible avec la plupart des solvants et solutions aqueuses. La fabrication ne recourt à aucun monomère, plastifiant, adhésif, ou agent mouillant si bien que toute contamination des échantillons est exclue, tandis que l'adsorption protéique reste faible et que la perte d'échantillon est minimisée.

La membrane Anopore est fournie sous forme de membranes filtrantes Anodisc. A sa périphérie, la membrane est reliée à un support annulaire en polypropylène (à l'exception du disque de diamètre 13 mm) pour faciliter sa manipulation et sa compatibilité avec les appareils de filtration sous vide et sous pression.

Anopore est disponible en 3 seuils de filtration: 0,02 μ m, 0,1 μ m et 0,2 μ m ainsi qu'en 3 diamètres : 13 mm, 25 mm et 47 mm.


Caractéristiques et avantages

- Haute densité des pores et distribution serrée de la taille des pores
 - pour obtenir une membrane d'une précision extrême
- Large compatibilité avec les solvants réduisant la nécessité de stocker toute une variété de membranes dans le laboratoire
- Aucun additif utilisé dans le processus de fabrication assurant une teneur minimale en extractible contaminant l'échantillon
- Très faible taux d'adsorption protéique minimisant la perte d'échantillon
- Virtuellement transparente, ce qui en fait la membrane idéale pour les examens au microscope

Applications

- · Filtration des phases mobiles en HPLC et dégazage
- Ultra purification de solvants
- Analyse gravimétrique
- Extrusion de liposomes
- Examens au microscope électronique à balayage
- Analyse bactérienne par microscopie par épifluorescence
- Filtration micrométrique et nanométrique
- Formation de nanorodes métalliques

Structure des pores de la membrane Anodisc

Données caractéristiques- Membranes inorganiques Anopore				
	Anodisc 13	Anodisc 25	Anodisc 47	
Epais. moyenne membrane	60 µm	60 μm	60 μm	
Diam. membrane	13 mm	21 mm	43 mm	
Type de membrane	Anopore oxyde d'aluminium	Anopore oxyde d'aluminium	Anopore oxyde	
			d'aluminium	
Matériau support annulaire	Néant	Polypropylène	Polypropylène	
Processus de fabrication	Néant	Thermosoudage	Thermosoudage	
Adsorption protéique	Faible	Faible	Faible	
Résist. à l'éclatement	4.5 – 7.5 bars	4.5 – 7.5 bars	4.5 – 7.5 bars	
Temp. max. de mise en oeuvre	40° C	40° C	40° C	
Porosité	25-50%	25-50%	25-50%	
Autoclavable	Oui	Non	Non	
Indice de réfraction	1.6	1.6	1.6	

Information Achat - Membranes inorganiques Anopore							
Diamètre	Membrane	Seuil de	Référence	Hydrophile	Adsorption	Résistance	Conditionn.
(mm)		filtration (µm)	protéique	aux solvants			
13	Anodisc 13*	0.02	6809-7003	Oui	Faible	Très bonne	100
13	Anodisc 13*	0.1	6809-7013	Oui	Faible	Très bonne	100
13	Anodisc 13*	0.2	6809-7023	Oui	Faible	Très bonne	100
25	Anodisc 25	0.02	6809-6002	Oui	Faible	Très bonne	50
25	Anodisc 25	0.1	6809-6012	Oui	Faible	Très bonne	50
25	Anodisc 25	0.2	6809-6022	Oui	Faible	Très bonne	50
47	Anodisc 47	0.02	6809-5002	Oui	Faible	Très bonne	50
47	Anodisc 47	0.1	6809-5012	Oui	Faible	Très bonne	50
47	Anodisc 47	0.2	6809-5022	Oui	Faible	Très bonne	50

^{*} Sans support annulaire