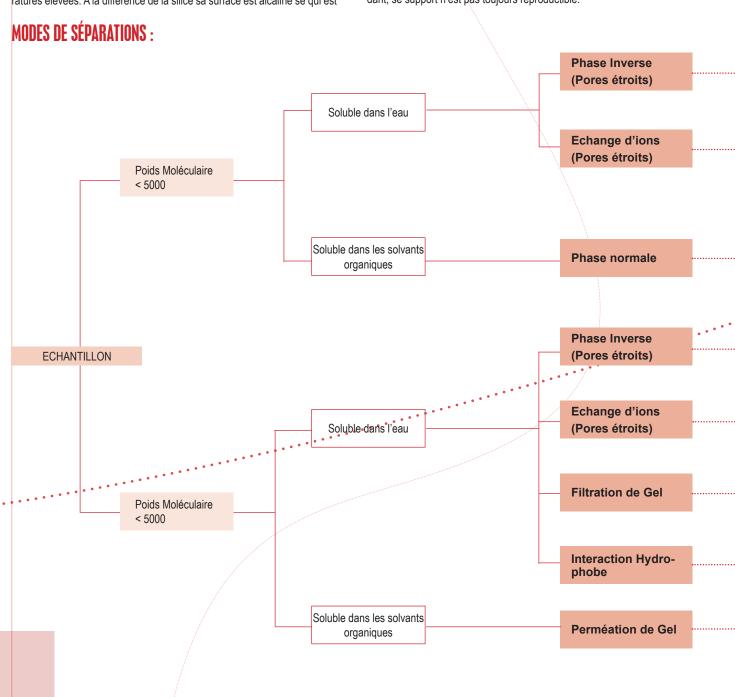


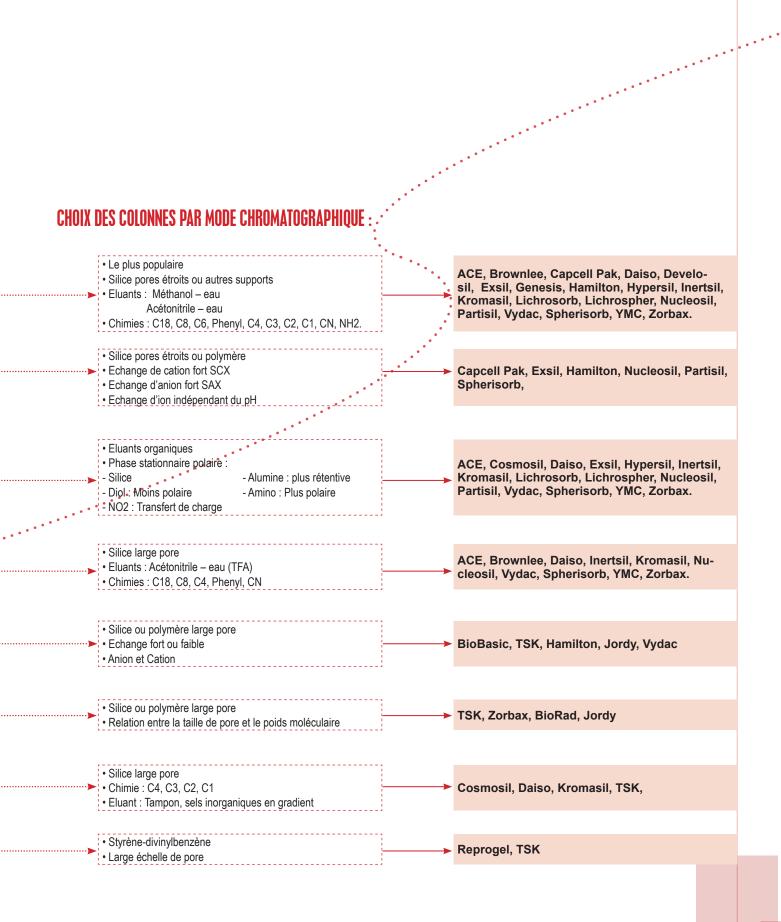
SUPPORTS:

La Silice est le support le plus utilisé. Sa résistance mécanique est très importante. On peut modifier facilement sa surface chimique et sa polarité pour l'utiliser dans beaucoup de modes chromatographiques. Normalement, la silice se dissout dans l'eau à un pH > 6,5 et son greffage est instable à pH < 2,5. Cependant, les nouvelles générations ont une gamme de pH étendue de 1,5 à 10.

Le Polymère a moins de restriction au niveau du pH mais à une résistance mécanique faible. Son efficacité est moins importante que la silice pour la séparation des petites molécules mais équivalente pour les grandes molécules (protéines et polymères de synthèse).


Le titane (TiO₂) est stable dans une large gamme de pH et aux températures élevées. A la différence de la silice sa surface est alcaline se qui est

un avantage pour l'analyse des composés basiques. Cependant, les séparations et ses performances sont généralement faibles en raison d'une surface spécifique moindre.


L'alumine à une meilleure stabilité au pH que la silice mais sa surface ne peut être modifiée facilement.

Le carbone graphité à une résistance mécanique et une gamme de pH importante mais ne peut être modifié. C'est un support cher qui n'est utilisé que pour quelques applications ou il a une sélectivité unique.

Le zirconium (ZrO₂) à l'avantage d'avoir une sélectivité unique combiné à une extrême stabilité chimique et thermique (plus de 200°C). Cependant, se support n'est pas toujours reproductible.

A.I.T FRANCE

PHASES INVERSES:

La performance des phases inverse dépend de nombreux paramètres. Deux propriétés sont importantes car elles déterminent le choix des colonnes c'est l'hydrophobicité et la polarité.

L'Hydrophobicité:

La force des interactions hydrophobes peut être mesurée par la rétention des molécules neutres (non polaires). Le pourcentage de carbone d'un support est une information simple mais très utile pour caractériser une phase.

La figure 1 montre que l'augmentation de la rétention est en relation avec la longueur de la chaîne carbonée (taux de carbone).

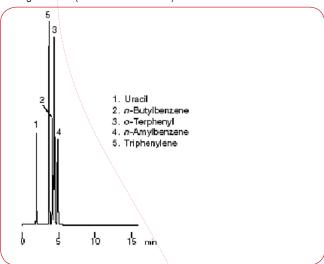
La différence de rétention entre les colonnes C18 de différentes fabrications est souvent très visible.

La polarité :

Le second point important est l'activité des silanols souvent comparé en terme de polarité.

Ce facteur peut être déterminé par comparaison de la rétention d'un composé polaire (interactions hydrophobes et ioniques) et de celle d'un composé neutre (seulement interactions hydrophobes).

Les phases ultra pure désactivée pour les bases :


Ces dernières années beaucoup de nouvelles phases ont été introduites. Le niveau des impuretés métalliques a été diminué en dessous de la barre des 10ppm. En résulte une baisse de la polarité de la silice et l'absence de groupements silanols résiduels.

Couplé à un greffage plus efficace et plus reproductible cela donne des phases nouvelles générations adaptées à la séparation des composés basiques.

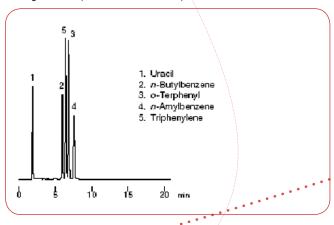
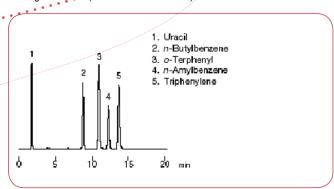

De plus, l'association d'une chaîne carbonée et d'un composé polaire (polar embedded) apporte une sélectivité différente et des propriétés jamais atteintes (voir phase stable à l'eau ci-dessous).

Figure 1 : Augmentation de la rétention avec la longueur de la chaîne carbonée.


Silice greffée C4 (taux de carbone : 8%)

Silice greffée C8 (taux de carbone : 11%)

Silice greffée C18 (taux de carbone : 17%)

Colonnes: 150 x 4,6mm Eluants: Méthanol / eau (80/20)

Débit : 1,0mL/min Température : 37°C Détection UV à 254nm

LISTE DES DIFFÉRENTES GÉNÉRATIONS DE SILICE GREFFÉE C18:

- **SILICE IRREGULIERE**: Alphabond (Alltech), RSil (Alltech), Versapak (Alltech), Lichrosorb (VWR), µBondapak (Waters), Partisil (Whatman).
- SILICE SPHERIQUE (TYPE A): Zorbax (Agilent), Adsobosphere (Alltech), Alltima (Alltech), Chromegabond (ES Industries), Vydac (Grace-Vydac), Nucleosil (Macherey-Nagel), Aqua (Phenomenex), Ultracarb (Phenomenex), Allure (Restek), Supelcosil (Supelco), Hypersil (Thermo), Microsorb (Varian), Omnisphere (Varian), Lichrosphere (VWR), Superphere (VWR), Novapak (Waters), Spherisorb (Waters), Symmetry (Waters), Partisphere (Whatman), J'sphere (YMC), ODS-A (YMC).
- SILICE SPHERIQUE ULTRA PURE (TYPE B): ACE (ACT), Zorbax RX, SB, Eclipse, Extend (Agilent), Apollo, Prevail, Alltima HP (All-tech), Daisogel A (Daiso), Acclaim (Dionex), Kromasil (Eka Chimie), Chromegabond WR (ES Industries), Inertsil (GL Sciences), Denali, Everest (Vydac), Nucleodur (Macherey-Nagel), Cosmosil (Nacalai Tesque), Luna, Synergi, Jupiter (Phenomenex), Pinnacle II (Restek), Discovery (Supelco),

Hypersil Gold, Hypurity (Hypersil), Pursuit (Varian), Purosphere (VWR), XTerra (Waters), Pro C18 (YMC).

- SILICE SPHERIQUE ULTRA PURE AVEC SITÉ POLAIRE : ACE AQ (ACT), Zorbax Bonus RP, SB-Aq (Agirent), Alltima HP Amide, EPS (Alltech), Daisogel B (Daiso), Acclaim PA (Dionex), Aquasep, Protect RP (ES Industries), Inertsil QDS-EP (GL Sciences), Pyramid (Macherey-Nagel), Fusion Hydro, Polar RP (Phenomenex), Ascentis (Supelco), Hypurity Aquastar (Thermo), Polaris (Varian), Atlantis, SymmetryShield (Waters), Hydrosphere (YMC).
- SILICE MODIFIEE : Chromolith (VWR) : silice monolithique Hypercarb (Thermo) : silice enrobée d'un polymère de carbone
- SILICE ULTRA PURE HYBRIDE (TYPE C): Gemini (Phenomenex), XTerra (Waters), Cogent Bidentate C18 (Microsolv).

COMPARAISON DE L'HYDROPHOBICITÉ ET DE LA POLARITÉ DE DIFFÉRENTES PHASES C18 :

Î	FAIBLE	MOYEN	FORT	
	ACE CN, Hypersil CPS, Inertsil CN-3, Spherisorb CN, Zobax TMS, Zorbax SB CN, Kromasil CN	ACE Phenyl, Hypersil MOS, Inertsil Ph- 3, Kromasil Phenyl, Spherisorb C8, Zobax C8, Zorbax SB Phenyl	Exsil ODS et ODS 1, Lichrospher RP18, Nucléosil C18, Sphé- risorb ODS1 et 2, Zorbax ODS	FAIBLE
Polarité	Inertsil C4, Zorbax SB C3, Vydac 300P	Lichrospher RPSelect B YMC basic Zorbax Rx C8 Zorbax SB C8	Hypersil BDS C18 Inertsil ODS Inertsil ODS 2 Nucleosil C18 AB Zorbax Rx C18 Zorbax SB C18	MOYEN
	ACE C4, Kromasil C1, Kromasil C4,, Vydac 300M, YMC ProC4	ACE C8, Kromasil C8, YMC ProC8 Zorbax XDB C8	ACE C18 Develosil ODS-UG Hypurity C18 Kromasil C18 YMC ProC18 Zorbax XDB C18	FORT
		Hydrophobicité		

PHASES INVERSES STABLES À L'EAU :

(la colonne idéale : ACE C18 AQ)

Introduction

Pour avoir une bonne séparation des composés solubles dans l'eau et très polaires, on utilise généralement moins de 5% de solvant organiques. Avec de tel proportion de solvant aqueux, les temps de rétention diminue vite et la reproductibilité est mauvaise. Les phases C8 et C18 traditionnelles se dégradent rapidement, les chaînes carbonées se couchent sur elles-mêmes et deviennent inaccessible.

Phases stables à l'eau

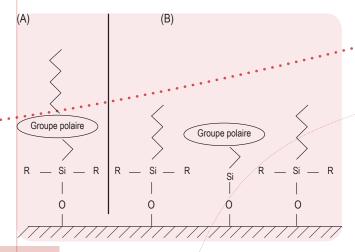
Ce problème est résolu en ajoutant un site polaire sur la chaîne carbonée (voir figure suivante) ou en Endcapping. Ces deux approches avec celle d'utiliser une C30 constituent la solution pour travailler dans 100% de phase aqueuse.

Bonne rétention et résolution des composés polaires

Contrairement aux phases traditionnelles greffées, les phases «polaires» sont très résistantes aux conditions aqueuses (pendant plusieurs semaines) et ne perdent pas leur rétention. Elles ont une excellente reproductibilité, améliore la finesse des pics et sont adaptés aux composés acide, basique et amphotère.

Sélectivité différente

Les phases C18 dépendent principalement des interactions hydrophobes entre l'analyte et la phase stationnaire. L'avantage des phases «AQ» c'est qu'elle ont en plus des interactions hydrophile par les liaisons hydrogène et les force dipôle – dipôle. Ceci influence les séparations et améliore la sélectivité des composés polaires.


Elimine l'appariement d'ions

De nombreuses séparations de composés polaires nécessitent l'utilisation d'un appariement d'ions. Les phases «AQ» permettent d'avoir des résultats reproductible et bon en utilisant un système aqueux/organique classique.

Applications

Les phases «AQ» sont excellentes pour la séparation des acides carboxyliques, des vitamines hydrosolubles, des catécholamines, des acides et bases nucléiques et les composés pharmaceutiques polaires.

Phases embedded (A) et Endcapped (B) avec un site polaire :

PHASES INVERSES LARGES PORES:

(la colonne Idéale : Kromasil 300 Å)

Pour qu'une molécule d'un échantillon accède facilement à l'intérieur des pores d'une phase, il faut que son diamètre soit inférieur à la moyenne des tailles de pores. Les molécules de poids moléculaire élevés qui passent dans un support de 60 à 120Å, sont exclus des pores et ont une mauvaise diffusion : l'efficacité est réduite.

L'utilisation de phases greffées avec larges pores permet dans ce cas d'augmenter la résolution, la capacité et le recouvrement des protéines et des molécules biologiques. Le poids moléculaire des composés peut atteindre 130 000 MM pour une phase C4. Les cartes peptidiques, les peptides de synthèse ainsi que les petites protéines polaires sont idéalement séparé sur une phase C8. Quant aux phases C18 elles sont utilisés pour l'analyse de petits peptides. D'autres chimies sont disponibles en large pore tel que le phényle et le cyano.

L'évolution de la pureté de la silice à été également transmise aux phases larges pores ce qui les rend plus efficace et résistante que les anciennes générations.

PHASES GREFFÉE PHÉNYL :

(les colonnes idéales : ACE et Kromasil Phényl)

Les phases phényle offre une sélectivité différente des phases inverses classiques. Elles ont une rétention similaire aux C8 mais avec en plus des interactions π - π ce qui leurs donnent une bonne sélectivité pour les composés aromatiques.

Le greffage Phényle est souvent moins stable q'un groupement C8 ou C18.

Son encombrement stérique important lui donne une densité de greffage faible et beaucoup de silanols résiduels.

Récemment, l'introduction des dernières générations de phases a permis d'améliorer la stabilité du Phényle.

PHASES POLAIRES:

(les colonnes idéales : ACE CN, Kromasil NH2 et Cosmosil)

Les silices avec un greffage polaire offrent une sélectivité unique par rapport aux chaînes carbonée classique. En général, elles sont moins hydrophobes et plus polaires. Les phases cyano, amino et diol peuvent être utilisée en phase normale ou inverse.

En phase normale, elles s'équilibrent plus rapidement que la silice et ne se désactivent pas en présence d'eau.

Les sociétés EKA NOBEL, ACT et Nacalai Tesque proposent des phases de dernières générations très résolutives et reproductibles.

Les colonnes cyano sont souvent utilisées en phase inverse. Elles sont disponibles en large pore pour l'analyse des protéines hydrophobes.

En plus des séparations en phase normale, les colonnes amino sont utilisées pour la séparation des composés polaires comme les sucres ou en tant qu'échange d'anions faible.

Les phases diol s'emploient couramment en phase inverse pour l'exclusion des molécules et en phase normale pour l'analyse des phospholipides.

PHASES D'INTERACTIONS HYDROPHILES (HILIC):

(la colonne idéale : Sequant HILIC)

La chromatographie d'interactions hydrophiles (HILIC) est une variante de la phase normale car la phase stationnaire est polaire mais elle s'utilise avec un éluant partiellement aqueux. Les analytes sont élués dans l'ordre de polarité (hydrophilie) croissante, l'opposé de la phase inverse.

Principe de la séparation

La rétention d'un support HILIC est proportionnelle à la quantité de solvants organiques dans l'éluant. En général, il comprend 65-80% d'acétonitrile, de méthanol ou de propanol. La faible quantité d'eau génère une couche stagnante aqueuse sur la surface de la phase stationnaire. Ceci permet le partage du soluté entre la couche aqueuse et l'éluant (voir figure ci contre). De plus, il apparaît entre ces deux phases un échange électrostatique faible qui améliore encore la sélectivité.

Le gradient d'élution est optimal en diminuant la phase organique et en augmentant la quantité de sels. Ces derniers ne sont pas nécessaires pour les composés neutres. Pour les composés chargés comme les peptides, on • a met 10mM de sels pour avoir une bonne séparation.

Pour la LC-MS, les tampons idéales sont le formate et l'acétate d'ammonium. Pour les autres applications on utilise tous les autres sels solubles dans l'éluant comme le methylphosphonate de potassium, la triethylamine phosphate ou le perchlorate de sodium.

Applications

Les phases HILIC sont utilisés quand les composés ne sont pas retenus sur une colonne en phase inverse. Il s'agit généralement des sucres, des oligonucléotides, des peptides, des protéines, des acides aminés, des produits naturels et des composés phosphorylés.

L'autre avantage de ces supports c'est qu'en utilisant moins de phase aqueuse, la sensibilité est nettement améliorée:

LES PHASES DE CHROMATOGRAPHIE D'EXCLUSION :

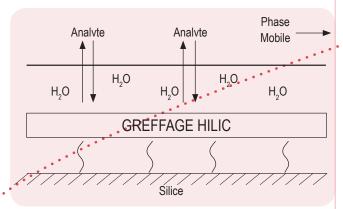
(TSK, Reprogel, Jordy)

Les colonnes SEC, séparent les composés selon leur poids moléculaire en solution, les plus grands sont élués en premier.

La séparation est basée sur le passage ou non du produit a travers les pores. Cette technique permet de caractériser la distribution de la masse molaire d'un polymère.

Support

Pour l'exclusion en phase aqueuse (SEC), la silice est beaucoup plus efficace que les supports de polystyrène divinylbenzène. Ces derniers sont utilisés pour des gammes de pH élevés ainsi que pour la chromatographie préparative en raison de leur grand choix de taille de particules.


Pour l'exclusion en phase organique (GPC), on utilise uniquement des support polymériques car ils sont très résistant au THF et autres solvants.

Applications

La SEC est très utile pour la séparation des protéines car elle ne dénature pas leur géométrie et garde leur activité.

On peut également avoir des phases avec des tailles de pores mixtes pour séparer les polymères qui ont une gamme de poids moléculaires étendue.

Mécanisme de partage de la phase HILIC :

PHASES D'ÉCHANGE D'IONS

(Colonnes idéales : Hamilton PRPX)

Les phases échangeuses d'ions sépare les composés selon leur charge ionique. La rétention dépend du pH de l'éluant, la nature et la force ionique du tampon et de la température. L'efficacité de ces colonnes est plus faible que la chromatographie en phase inverse. L'éluant est généralement aqueux mais peut contenir un peu de modifiant organique.

Les échangeurs d'ions sont disponibles sur silice et sur polymère. Sur ce dernier, le greffage est incorporé à l'intérieur de la matrice, l'ensemble est stable à des pH élevés et il n'y a pas de silanols résiduels. Dans le cas de la silice, le greffage est en surface, sa résistance mécanique et son efficacité est plus forte.

Application

L'échange d'ion est utilisé pour l'analyse des petits ions mais également pour la séparation des molécules biologiques comme les protéines et les acides nucléiques.

Capacité de l'échange d'ion

La capacité est relative à la rétention des composés. Elle est exprimée en milliéquivalents par gramme. Pour de nombreuses phases, la densité de remplissage est aussi un élément important. Pour les support large pore, l'échange d'ion et généralement faible.

LA CHROMATOGRAPHIE PRÉPARATIVE :

(Support idéal : Kromasil)

La chromatographie préparative permet de purifier des produits du milligramme au kilogramme. Le principe est d'utiliser des tailles de particules et des diamètres internes plus importants pour charger d'avantage la colonne.

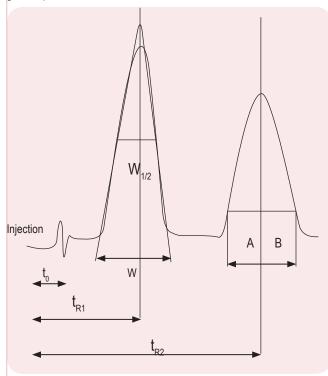
- la résolution : on optimise la séparation entre le pic d'intérêt et le contaminant le plus proche pour augmenter la charge.
- La capacité de charge : elle dépend de la taille des pores et de la surface spécifique. Plus les surfaces spécifiques sont importantes et plus on peut charger la colonne.
- Stabilité chimique et physique : la durée de vie de la colonne et sa résistance mécanique sont des facteurs indispensables en préparative.

Diamètre	Débits	Volume de colonne	Masse de	Charge	Charge	Densité de
interne (mm)	(mL/min)	I=250mm (mL)	phase (g)	Optimale	en pratique	remplissage
4,6	1,0	4,2	2,5	-		-
10	4,7	20	12	10mg	25mg	0,61
20	19	79	47	50mg	1g	0,59
48	110	450	268	250mg	5g	0,59
96	440	1800	1072	1g	20g	0,59
				ŭ	Ü	

Masse de phase (g) = (ID/20)2 x (3,14) x (L/10) x (densité de remplissage en g/cm3)

USP	Descriptif de la colonne	Colonne Idéale	Page
L1	Octadécyl silane greffée chimiquement sur une silice ou céramique poreuse sphérique de 3 à 10µm	ACE C18	
	cottatosy, chance gronoe commiquement can allo chico ca contamique percetos opriorique ac c a ropin	Kromasil C18	
L2	Octadécyl silane greffée sur un gel de silice de porosité contrôlée enrobée sur		
	un support solide sphérique de 30 à 50µm		
L3	Particules de silice sphérique de 5 à 10µm	Kromasil Si	
L4	Gel de silice de porosité contrôlée greffée sur un support solide sphérique de 30 à 50µm		
L5	Alumine de porosité contrôlée greffée sur un support solide sphérique de 30 à 50µm		
 L6	Echange de cation fort : polymère de fluoro carbone sulfonaté enrobé sur un support solide		
	sphérique de 30 à 50µm		
L7	Octyl silane greffée sur une silice entièrement poreuse de diamètre 3 à 10µm	ACE C8	
		Kromasil C8	
L8	Aminopropyl silane mono fonctionnel greffée sur une silice poreuse sphérique de 10µm	Kromasil 10µm NH2	
L9	Echange de cation fort greffé sur une silice poreuse sphérique ou irrégulière de 10µm	Exsil SCX	
L10	Nitrile greffé sur une silice sphérique poreuse de 3 à 10µm	Kromasil CN	
L11	Phenyl greffé sur une silice sphérique poreuse de 3 à 10µm	ACE Phenyl	
L12	Echange d'anion fort (amine quaternaire) greffée sur une silice sphérique de 30 à 50µm		
L13	Triméthyl silane greffée sur une silice poreuse de 3 à 10µm	Kromasil C1	
L14	Echange d'anion fort (amine quaternaire) gréffée sur une silice poreuse de 10µm	Exsil 10µm SAX	
L15	Hexyl silane greffée sur une silice sphérique poreuse de 3 à 10µm	Exsil C6	
L16	Diméthyl silane greffée sur une silice sphérique poreuse de 3 à 10µm	Nucléosil C2	
L17	Echange de cation fort de forme Hydrogène liée à un copolymère de styrène divinyl	Hamilton HC7 5	
	benzène de 7 à 10µm	H+	
L18	Amino et cyano greffée sur une silice poreuse de 5 à 10µm	Partisil PAC	
L19	Echange de cation fort de forme Calcium liée à un copolymère de styrène divinyl benzène de 9µm	Hamiltin HC 75	
		Ca2+	••••
L20	Dihydroxy propane silane greffée sur une silice poreuse de 5 à 10µm	YMC Diol	
L21	Copolymère sphérique et rigide de polystyrène divinylbenzène de 5 à 10µm	Hamilton PRP1	
L22	Echange de cation (acide sulfonique) liée à un gel de polystyrène de 10µm ou proche	Hamilton PRPX200	
L23	Résine échangeuse d'anion (amine quaternaire) fabriquée à partir d'un gel de poly méthacrylate	TSK SuperQ-5PW	
	ou acrylate de 10μm ou proche		
L24	Gel hydrophile semi rigide de polymère vinyle fonctionnalisé hydroxy en surface.	Toyopearl HW 40F	
	Diamètre de particule 32 à 63µm		
L25	Résine de poly méthacrylate fonctionnalisé avec de l'éther poly hydroxy pour molécules	Jordy	
	de 100 à 5000MM		
L26	Butyl silane greffée sur une silice poreuse sphérique de 5 à 10µm	Kromasil C4	
L27	Silice poreuse de 30 à 50µm	YMC silice	
L28	Silice sphérique ultra pure avec double greffage échange d'anion (amine) et C8		
L29	Alumine gamma polybutadiène, phase inverse avec faible pourcentage de carbone sphérique de 5µm et 80Å		
L30	Ethyl Silane greffée sur une silice poreuse de 3 à 10µm	Nucléosil C2	

USP	Descriptif de la colonne	Colonne Idéale	Page
L31	Résine échangeuse d'anion fort (amine quaternaire) greffée sur un latex liée à des	Ion Pak ASII-HC	
	particules d'ethylvinylbenzène avec 55% de divinyl benzène de 8,5µm et de porosité 2000Å	(Dionex)	
L32	Echange de ligand chiral (complexe de L-Proline cuivré) greffée sur une silice irrégulière de 5 à 10μm	Regis Davankov	••
L33	Silice sphérique greffée diol pour la séparation des protéines de 4000 à 400000 daltons	YMC Diol	
L34	Résine échangeuse de cation de forme plomb liée à un polystyrène divinyl benzène de 9µm ou proche	Hamilton HC-75	
		Pb2+	
L35	Silice greffée Diol de porosité 75Å stabilisé avec du Zirconium	Zorbax GF-250	
L36	Silice aminopropyl de 5µm liée à un dérivé de 3,5-dinitrobenzoyle L-Phenylglycine	Régis	
		Phenylglycine	
L37	Gel de poly méthacrylate pouvant séparer les protéines de 2000 à 40000 daltons	Jordy	
L38	Phase d'exclusion stérique en méthacrylate pour phase aqueuse	Jordy	
L39	Gel poreux hydrophile de polyhydroxy méthacrylate	Jordy	
L40	Cellulose tri-3,5-dimethylphenylcarbamate greffée sur une silice poreuse de 5 à 20µm	Chiralcel OD	
L41	⊩acide glycoprotéine immobilisé sur une silice sphérique de 5µm	Regis ChiralAGP	
L42	Octyl et Octadécyl silane greffé sur une silice poreuse de 5µm		
L43	Pentafluorophenyl greffé sur une silice de 5 à 10µm	Wakopak Fluofix	
L44	Silice sphérique ultra pure de 60Å avec double greffage échange de cation (acide sulfonique) et C8		
L45	Beta cyclodextrine greffée sur une silice poreuse de 5 à 10μm		
L46	Latex greffé échange d'anion (amine quaternaire) liée à un polystyrène divinylbenzène de 10µm	Hamilton PRPX	
L47	Phase échangeuse d'anions de haute capacité de faible porosité entièrement fonctionnalisé		
	avec la triethylamine. 8µm		
L48. • •	Echange d'anion greffé sur un polystyrène sulfonaté de 15µm		
L49	Phase inverse de polybutadiène greffé sur des particules de zirconium poreuses sphériques de 3 à 10 µm		
L50	Phase mixte inverse et échangeuse d'anion (amine quaternaire) liée à un polymère ethylvinylbenzène		
	avec 55% de divinylbenzène de 3 à 15µm. Surface spécifique supérieure à 350m2/g		
L51	Amylose tris-3,5-dimethylphenylcarbamate greffé sur une silice poreuse sphérique de 5 à 10µm		
L52	Echange de cation fort (Sulphopropyl) greffée sur une silice de 5 à 10µm	TSK IC-Cation	
L53	Echange de cation faible (acide carboxylique ou phosphorique) lié à un polymère ethylvinylbenzène		
	avec 55% de divinylbenzène de 3 à 15µm. Capacité supérieure à 500µEq/colonne		
L54	Phase d'exclusion stérique composé d'un Dextran hautement liée à un gel poreux d'agarose	Superdex Peptide HR	
	de 13µm ou proche		
L55	Echange de cation fort (acide maléique polybutadiène) greffé sur une silice poreuse de 5µm		
L56	lsopropyl silane greffé sur une silice poreuse de 3 à 10µm	Exsil C3	
L57	Protéine chirale d'ovomucoïde greffé sur une silice de 5µm et de poroité 120Å	Ultron ES-OVM	
L58	Résine échangeuse de cation de forme sodium liée à un polystyrène divinyl benzène de 7 à 11µm	Hamilton HC-75	
		Sodium	


EFFICACITÉ DE LA COLONNE :

En général, **N** = nombre de plateaux théoriques, **a** est une constante qui dépend de la méthode utilisée, tr est le temps de rétention du pic et **W** est la largeur du pic à une certaine hauteur.

$$N = a (t_s / W) 2$$

Méthode	а
Largeur du pic à mi-hauteur	5,54
Largeur du pic à 4,4% de la hauteur	25
Largeur du pic à la tangente (13,5%)	16

La méthode la plus utilisé pour calculer l'efficacité de la colonne est la largeur du pic à mi-hauteur.

Asymétrie du pic :

AS = B / A à 10% de la hauteur du pic

Facteur de rétention :

Le facteur de rétention ou de capacité, k, d'un composé est la mesure relative du temps d'un composé retenu sur la colonne et d'un autre qui n'est pas retenu comme l'uracil.

$$k = (tR - t0) / t0$$

t_e est le composé retenu et t0 le non retenu.

Facteur de séparation (sélectivité) :

Le paramètre de sélectivité, II, est l'espace entre deux pics. Elle est exprimée par :

$$\alpha = k2 / k1$$

Résolution:

La résolution RS est la quantité d'espace entre deux pics proches. Elle est **exprimée par :**

$$R_s = (1/4) (\alpha - 1) (N) 1/2 (k / (1 + k))$$

Vérification de votre colonne neuve :

- · Vérifiez que la colonne reçue est bien celle que vous avez commandée
- · Vérifiez que celle-ci n'a pas eu de dégât pendant le transport
- Testez la colonne rapidement pour vous assurer de ses performances.
- Les colonnes sont stockée dans l'éluant qui a servit de test (sauf si précisé)

Considération de la phase mobile :

- · Utilisez des solvants de qualité HPLC
- · Utilisez des réactifs ultra purs
- Dégazez et filtrer toutes le phases mobile avant utilisation
- · Assurez vous que les solvants sont miscibles
- Vérifiez la solubilité de votre échantillon
- · Diluez votre échantillon dans la phase mobile
- Vérifiez que la pression ne dépasse pas 3500psi (245 bars)

Stockage de la colonne :

- Les conditions de stockage affectent la durée de vie de la colonne
- Ne jamais stocker la colonne avec un tampon ou un appariement d'ion
- Laver avec 5 volumes de phase mobile sans tampon pour enlever les sels

Conditions de stockage des phases de silice:

Type de colonne		Solvant de stockage
Phase inverse C18, C8, C4, C1, F	hényl	.65% Acétonitrile
		35% Eau
Phase normale Silice, CN, NH2, D)iol	Isopropanol ou Hexane
Echange d'ion		Méthanol
Exclusion Diol		10% MeOH dans l'eau

Nom de la Phase	Taille des particules (µm)	Taille de pore (Å)	Volume de pore (mL/g)	Surface spécifique (m2/g)	Taux de carbone (%)	Greffage en surface	Densité de greffage (µmole/m2)	Recouvrement final
ACT ACE C18 ACE C18 AQ ACE C8 ACE C4 ACE CN ACE Phenyl	Spher 3, 5, 10 Spher 3, 5, 10	100 100 100 100 100 100	- - - -	300 300 300 300 300 300 300	15,5 14 9 5,5 5,5 9,5		-	Oui Oui Oui Oui Oui Oui
Agilent Technologies Zorbax Rx C8 Zorbax Rx C18 Zorbax ODS Zorbax C8 Zorbax CN Zorbax SB C8 Zorbax SB C18 Zorbax SB CN Zorbax SB CN Zorbax SB CN Zorbax TMS Zorbax TMS Zorbax Eclipse XDB C8 Zorbax Eclipse XDB C18 Zorbax SB-Aq Zorbax 300 SB-C8 Zorbax 300 SB-C18 Zorbax 300 SB-CN Zorbax BCN Zorbax Clipse XDB CN Zorbax SB-Aq Zorbax 300 SB-C18 Zorbax 300 SB-C18 Zorbax SB-C3 Zorbax Clipse XDB Phenyl Zorbax Bonus RP Zorbax Extend C18 Zorbax 300 Extend C18	Spher 3.5, 5, 7 Spher 3.5, 5, 7 Spher 3, 5, 7 Spher 3, 5, 7 Spher 3.5, 5, 7 Spher 5 Spher 5, 7 Spher 3.5, 5 Spher 3.5, 5 Spher 3.5, 5 Spher 3.5, 5 Spher 3.5, 5, 7 Spher 3.5, 5, 5 Spher 3.5, 5	80 80 70 70 70 80 80 80 70 70 70 80 80 80 300 300 300 80 80 80	- - - -	180 180 300 300 300 180 180 180 180 300 300 300 300 180 180 45 45 45 45 180 180 180 180	5,5 • • • • • • • • • • • • • • • • • •	Mono Mono Mono Mono Mono Mono Mono Mono	2,40 2,98 3,47 2,41 3,47 2,40 2,98 1,60 3,04 1,23 4,79 2,21 3,60 3,40 - 1,50 2,80 1,10 1,20 -	Non Non Oui Oui Oui Non Non Non Non Oui Oui Oui Double Oui Double Polaire Non Non Non Non Non Oui Oui Double Polaire Oui Double Amide Oui Double
Alltech Adsorbosphere C8 Adsorbosphere C8 Alltima Aq Alltima C18 Alphabond C18 Alphabond C8 Alphabond Si Apollo C18 Apollo Phenyl Econosil C18 Econosphere C18 Econosphere C8 Platinum / EPS Platinum C4-300 Platinum C8 Platinum C8 Platinum C18 Platinum C18 Platinum C18 Prevail C18 Prevail C18 Prevail C18 Prevail C8 Prevail C18 Prevail C8 Prevail Phenyl RSil C18 RSil C8 Versapak	Spher 3.5, 5, 10 Spher 3, 5, 7 Spher 3, 5 Spher 5, 10 Spher 5, 10 Irreg 5 Irreg 5 Irreg 5 Spher 5 Spher 5 Irreg 5, 10 Irreg 5, 10 Spher 3, 5, 10 Spher 3, 5, 10 Spher 3, 5, 10 Spher 3, 5, 10 Spher 1.5, 3, 5, 10 Spher 5, 10 Spher 3, 5 Spher 3, 5 Spher 3, 5 Spher 3, 5 Irreg 5, 10 Irreg 5, 10 Irreg 10	80 60 100 100 125 125 125 125 100 100 60 80 80 300 300 100 300 100 300 110 110 110 11		200 350 - - 300 300 300 340 340 450 450 200 200 100 200 100 200 200 100 200 350 350 350	12,0 20,0 15 9 16 10 - - 15 8 15 10 10 5 - - 4 - 2,5 6 - 5 15 8 7	Mono Mono Polymer Mono Mono Mono Mono Mono Mono Mono Mon	2,99 3,27 1,74 2,19 2,41 2,26 1,55 1,58	Oui Oui Oui Oui Oui Oui Oui Non Oui

Nom de la Phase	Taille des particules (µm)	Taille de pore (Å)	Volume de pore (mL/g)	Surface spécifique (m2/g)	Taux de carbone (%)	Greffage en surface	Densité de greffage (µmole/m2)	Recouvrement final
Beckman Coulter Ultrasphere	Spher 3, 5	80	-	-		-	-	Oui
Brownlee (Perkin Elmer) Spheri-5 RP 8 Spheri-5 RP 18 Spheri-5 ODS Spheri-5 Phenyl Spheri-5 Silice Spheri-5 Amino Spheri-5 Cyano Aquapore ODS OD-300 Aquapore Octyl RP-300 Aquapore Butyl BU-300	Spher 5 Spher 7 Spher 7 Spher 7	80 80 80 80 80 80 80 300 300 300		180 180 180 180 180 180 180 100 100	6 11 14 6 - 3 4 10 5 3	Mono Mono Polymer	- - - - - -	Oui Oui Oui - Non Non Oui Oui
Aquapore weak anion AX-300	•	300	-	100	-	\	-	-
Daiso Daisogel ODS-BP Daisogel ODS-AP Daisogel C8-P Daisogel C4-P Daisogel C1-P Daisogel APS Daisogel series 300	Spher 3, 4, 5 Spher 3, 4, 5	120 120 120 120 120 120 120 300	1,0 1,0 1,0 1,0 1,0 1,0 0,90	300 300 300 300 300 300 300 100	15 17 11 8 5 4	Mono Mono Mono Mono Mono Mono Mono	- - - - - -	Complet Complet Complet Complet Complet Complet Complet
Dionex Acclaim 120 C18 Acclaim 120 C8 Acclaim 300 C18 Acclaim C18 PolarAdv (PA) Acclaim OA C18	Spher 3, 5 Spher 3, 5 Spher 3 Spher 3, 5 Spher 5	120 120 280 120 120	0,9 0,9 0,95 1,0	300 300 105 300 300	18 11,2 7,9 17		3,2 3,7 3,7 2,7 2,7	Oui Oui Complet Polaire Polaire
Eka Chemicals Kromasil Si Kromasil C1 Kromasil C4 Kromasil C8 Kromasil C18 Kromasil NH2 Kromasil Diol Kromasil Phenyl Kromasil 300 C4	Spher 3.5, 5, 7, 10 Spher 5, 7, 10 Spher 3.5, 5, 7, 10 Spher 5	110 110 110 110 110 110 110 110 110 300	0,9 0,9 0,9 0,9 0,9 0,9 0,9	330 330 330 330 330 330 330 330	0 4,7 8 12 20 1,7	Mono Mono Mono Mono	0 4,3 3,8 3,7 3,5 4,3 -	Non Oui Oui Oui Oui Oui
Exmere						•	····/	
Exsil 80 ODS Exsil 100 ODS Exsil 100 C8 Avanti BDS C18 Avanti BDS C8 Avanti ODS Exsil 1000 ODS	Spher 1.5, 3, 5 Spher 1,5, 3, 5 Spher 1,5, 3, 5 Spher 3, 5 Spher 3, 5 Spher 1.5, 3, 5 Spher 5, 10	90 100 100 145 145 130 1000	0,51 0,52 0,52 ,0,68 0,68 0,63 >1	226 208 208 186 186 194	12*************************************		- - - - - -	- - - - -
ES Industries Aquasep C8 Chromegabond WR C18 Chromegabond WR C8 Protect RP C18 Protect RP C8 Protect RP Phenyl Chromegabond BAS C18 Chromegabond BAS C8 Chromegabond HC-C18 Chromegabond TMS (C1) Chromegabond C2 Chromegabond C3	Spher 5 Spher 3, 5 Spher 5, 10 Spher 5	100 120 120 100 100 100 120 120 120 100 60 60 60		450 350 350 250 250 250 180 180 350 475 480 220	16 16 9 14 5 5 12 8 22		- - - - - - - - -	Ether Oui Oui Amide Amide Amide Complet Complet Non Non Non

18

Nom de la Phase	Taille des particules (µm)	Taille de pore (Å)	Volume de pore (mL/g)	Surface spécifique (m2/g)	Taux de carbone (%)	Greffage en surface	Densité de greffage (µmole/m2)	Recouvrement final
ES Industries (Suite) Chromegabond C4 Chromegabond C4 Chromegabond C4 Chromegabond C4 Chromegabond C4 Chromegabond C4 Chromegabond C6 Cyclo Hexyl MC-CC6 Chromegabond C8 Chromegabond MC-8 Chromegabond MC-18 Chromegabond AP phenyl Chromegabond C8-BD Chromegabond C18-BD Chromegabond Diol RP Chromegabond Diol RP Chromegabond Triamine RP Chromegabond Triamine RP FluoroSep-RP Phenyl (FSP) FluoroSep-RP Propyl (FO) FluoroSep-RP Propyl (FP) Chromegabond PSC C8/C18 Gammabond Alumine RP-8	Spher 5 Spher 3, 5 Spher 5 Spher 5 Spher 3, 5	60 300 500 1000 4000 60 60 100 80 80 80 60 60 100 100 60 60 60 60 80 80		475 120 40 30 10 220 475 300 200 200 200 475 475 475 330 330 475 475 475 350 450 120 350	- - - - 6 7 8 .7 10 6 12 18 - - - - - -	Mono Mono Mono	-	Non Oui Oui Oui Non Oui Non Oui Non Non Non Non Non Non Non Non
GL Science Inertsil C8 Inertsil Phenyl Inertsil C4 Inertsil Si Inertsil ODS Inertsil ODS Prep Inertsil ODS (2) Inertsil ODS (3) Inertsil C8-3 Inertsil QDS-EP Inertsil QDS-EP	Spher 5 Spher 5 Spher 5 Spher 5 Spher 10 Spher 5 Spher 3, 5, 8 Spher 3, 5, 8 Spher 5 Spher 5 Spher 5	150 150 150 150 150 100 100 100 100 100	1,15 1,15 •f,15 1,15 0,70 - 1,15 1,05 1,05 1,05 1,05	320 320 320 320 320 450 350 320 450 450 450 450	10,5 10 7,5 0 17,5 14 18,5 15 9		3,26 2,77 3,76 0 - - 3,22 - -	Oui Oui Oui Non Oui Oui Oui Oui Oui Oui Polaire Oui
Inertšil WP300 C18 Grace-Vydac Jones	Spher 5	300	-	-	-		-	Oui
Denali C18 Everest C18 Diphenyl 219TP C18 218 TP C18 238 TP C18 201SP C18 201TP C4 214 TP C8 208 TP Apex CN Apex Phenyl Apex C2 Apex C8 Apex ODS-1 Apex ODS-2	Spher 3, 5, 10 Spher 3, 5 Spher 3, 5, 10 Spher 3, 5, 10 Spher 3, 5, 10 Spher 5, 10 Spher 3, 5, 10	120 300 300 300 300 90 300 300 100 100 100 100 100	0,6 0,6 0,6 0,8 0,6 0,6 0,6 0,77 0,77 0,77 0,77	90 90 90 450 90 90 90 170 170 170 170 170	5 8 - 13,5 8 3 - 4 9 2 7 10 10,5	Mono Mono Polymer Mono Polymer Polymer Polymer	- 4,53 4,16 - 1,53 4,16 4,89 - 3,57 4,61 3,43 3,84 2,83 3,00	- Oui Oui Oui Oui Oui Oui Oui Oui Oui
Hamilton PRP 1 RP PRP 3 RP PRP X100 Anions PRP X200 Cations PRP X300 exclusion d'ions PRP X400 Cations PRP X500 Anions PRP X600 Anions PRP X700 NH2 PRP X800 Cations	Spher 3, 5, 7, 10 Spher 3, 10 Spher 3, 5, 10 Spher 3, 10 Spher 3, 7 Spher 7 Spher 7 Spher 7 Spher 5, 7 Spher 7	100 300 100 100 100 N/A - -	-	415	0 0		- 0,19meq/g 35 µeq/g 0,17meq/g 2,5meq/g 1,6meq/g - -	Non Non - - - - - -

Nom de la Phase	Taille des particules (µm)	Taille de pore (Å)	Volume de pore (mL/g)	Surface spécifique (m2/g)	Taux de carbone (%)	Greffage en surface	Densité de greffage (µmole/m2)	Recouvrement final
Hamilton (Suite)				(, 3)			(
PRP Infinity RP	Spher 4	Non	-	-	Ė		-	-
HxSil C8	Spher 3, 5	100	-	-	-		-	Oui
Hx Sil C18 HC-40	Spher 3, 5 Spher 10-15	100	_	-			5meg/g	Oui -
1C-40 1C-75	Spher 9	_	-	_	_		5meq/g	Non
	Эрпег э	l				I	Jilleq/g	Non
CCS / Bischoff Prontosil Si	Spher 3, 5, 10	120	_	300	I _\	I	1-	1-
Prontosil Si	Spher 3, 5	60	_	450	_ \		_	_
Prontosil C18 ace-EPS	Spher 5	120	_	300	18,5		_	Oui
Prontosil C18 ace-EPS	Spher 5	200	_	200	12,5		_	Oui
Prontosil C18 Aq	Spher 3, 5	120	_	300	14		_	Complet
Prontosil C18 Ag	Spher 3, 5	200	_	200	9		_	Complet
Prontosil C18 Ag Plus	Spher 5	120	_	300	17		_	Complet
Prontosil C18 H	Spher 3, 5, 10	120	_	300	17,5		_	Oui
Prontosil C8 SH	Spher 3, 5, 10	120	_	300	10	N .	_	Oui
Prontosil C4	Spher 3, 5	120	-	300	5		_	Oui
Prontosil Phenyl	Spher 3, 5	120	-	300	10		-	Oui
Prontosil Amino	Spher 3, 5, 10	120	-	300	4	\	-	Non
Prontosil Amino E	Spher 5	120	-	300	5	\	-	Complet
Prontosil Amino H	Spher 5	120	-	300	4,5		-	Non
Prontosil CN	Spher 3, 5	120	-	300	5		-	-
Prontosil OH	Spher 3, 5	120	-	300	4	\	-	-
Prontosil C30	Spher 3, 5, 10	200	-	200	20	\	\ <u>-</u>	Non
Interchim								
Jptisphere C18-NEC	Spher 5, 7, 10	120	-	320	16	Mono	I- \	Non
Jptisphere C18-HDO	Spher 3, 5, 10	120	-	320	17	Mono	- \	-
Jptisphere C18-ODB	Spher 3, 5, 7	120	-	320	18	Mono	- \	Oui
Uptisphere C18-HSC	Spher 3, 5	-	-	-	20	Mono	-	Oui
Uptisphere C18-TF	Spher 5	-	-	-	14	Polymer	-	Oui
Uptisphere C8	Spher 3, 5	120	-	320	11	Mono	-	Oui
Uptisphere C4	Spher 3, 5	120	-	320	7	Mono	-	Oui
Uptisphere CN	Spher 3, 5	120	-	320	8	Mono	- \	Oui
Uptisphere Phenyl	Spher 5	120	-	320	9	Mono	-	Oui
Uptisphere NH2	Spher 5	120	-	320	5	Mono	-	Oui
Macherey-Nagel								
Nucleodur Gravity C18	Spher 3, 5	110	0,9	340	18		-	Oui
Nucleodur Gravity C8	Spher 5	110	0,9	340	11		 -	Oui .
Nucleodur Pyramid C18	Spher 5	110	0,9	340	14		/	Ōui
Nautilus C18	Spher 3, 5	100	-	-	16	Mono	···/	Oui
Protect 1	Spher 3, 5	100	-	-	11	Mono	- -	Oui
Nucleodur CN	Spher 5	110	0,9	-	7	Mono	- -	-
Nucleosil C18 HD	Spher 3, 5, 7	100	-	-	20	Mono	7	Oui
Nucleosil C8 HD	Spher 3, 5	100		• • • •	13	Mono	-	Oui
Nucleosil C18 AB	Spher 5	100	-	-	25	Polymer	-	Oui
Nucleodur C18 ec	Spher 5	. 100	-	-	17,5		-	Oui
Nucleosil Si	Spher 5, 7, 10	50	0,8	420	à		0	Non
Nucleosil 100 Si	Spher 5, 10	100	1,0	350	0		0	Non
Nucleosil C2	Spher 7	100	1,0	350	-		-	Non
Nucleosil C8	Spher 3, 5, 10	100	1,0	350	9		2,49	Non
Nucleosil C18	Spher 3, 5, 10	100	1,0	350	15		2,06	Oui
Nucleosil Phenyl	Spher 7	100	1,0	350	8		1,96	Non
Nucleosil Diol	Spher 7	100	1,0	350	_		1 72	Non
Nucleosil CN	Spher 5, 10	100	1,0	350	4		1,73	Non
Nucleosil NH2	Spher 5, 10	100	1,0	350	-		-	Non
Nucleosil NO2	Spher 5, 10	100	1,0	350	<u>.</u> .		-	Non
	Spher 5, 10	100	1,0	350	1meq/g		N/A	Non
		100	1,0	350	1meq/g		N/A	Non
Nucleosil SB	Spher 5, 10							
Nucleosil SB Nucleosil Si	Spher 3, 5, 7, 10	120	0,65	200	0		0	Non
Nucleosil SA Nucleosil SB Nucleosil Si Nucleosil C4	Spher 3, 5, 7, 10 Spher 5	120 120	0,65 0,65	200	2		-	Oui
Nucleosil SB Nucleosil Si Nucleosil C4 Nucleosil C8	Spher 3, 5, 7, 10 Spher 5 Spher 3, 5, 7, 10	120 120 120	0,65 0,65 0,65	200 200	2 6,5		- 3,27	Oui Non
Nucleosil SB Nucleosil Si Nucleosil C4	Spher 3, 5, 7, 10 Spher 5	120 120	0,65 0,65	200	2		-	Oui

	Nom de la Phase	Taille des particules (µm)	Taille de pore (Å)	Volume de pore (mL/g)	Surface spécifique (m2/g)	Taux de carbone (%)	Greffage en surface	Densité de greffage (µmole/m2)	Recouvrement final
	Macherey-Nagel (Suite) Nucleosil CN Nucleosil NH2 Nucleosil Si Nucleosil C4 Nucleosil C8 Nucleosil C18 Nucleosil C18 Nucleosil Phenyl Nucleosil Diol Nucleosil CN	Spher 7 Spher 7 Spher 3, 5, 7, 10 Spher 3, 5, 7, 10 Spher 3, 5, 7, 10 Spher 3, 5, 7, 10 Spher 7 Spher 7 Spher 7	120 120 300 300 300 300 300 300 300 300	0,65 0,65 0,80 0,80 0,80 0,80 0,80 0,80	200 200 100 100 100 100 100 100 100	- 0 2 3 6,5 2		- - 0 1,41 1,72 2,72 1,56	- Non Oui Oui Oui Non -
	Microsolv Cogent HPS C18	Spher 5	120	0,99	300	18,5	Mono	-	Complet
	Cogent HPS CB Cogent HPS Cyano Cogent HPS Amino Cogent HPS Phenyl Cogent HQ C18 Cogent HQ C8 Cogent UPHOLD C27 Cogent e-C18 Cogent e-C8 Cogent Bidentate C18	Spher 5	120 120 120 120 120 120 120 120 120 100 10	0,99 0,99 0,99 0,99 0,99 0,99 0,99 0,99	300 300 300 300 300 300 300 300 350 350	11,5 7,5 4,1 12 18 11,5 17 17 10	Mono Mono Trifonct	- - - - -	Complet Complet Non Non Non Complet Complet Complet Complet Hybride
	Nacalai Tesque			,					
• •	Cosmosil SL-II Cosmosil C18-AR-II Cosmosil C18-MS-II Cosmosil C18-MS-II Cosmosil C28-MS Cosmosil C4-MS Cosmosil C4-MS Cosmosil PE-MS Cosmosil PE-MS Cosmosil NH2-MS Cosmosil NH2-MS Cosmosil AR-300 Cosmosil PyrèneEthyl (PYE) Cosmosil Nitrophenylethyl NPE Cosmosil Pentabromoben PBB Cosmosil Diol-II Cosmogel DEAE Cosmogel QA amine quatern. Cosmogel CM carboxymethyl Cosmogel SP Sulfopropyl Cosmosil Prep C18	Spher 3, 5 Spher 3, 5, 15 Spher 3, 5 Spher 10 Spher 10 Spher 10 Spher 10 Spher 10 Spher 40, 75, 140	120 120 120 120 120 120 120 120		300 300 300 300 300 300 300 300 300 300	17 16 11 10 7 5 10 7 4 8,5 - 18 9 8 15 7 0,6meq/g 0,4meq/g 0,3meq/g 0,4meq/g 19	Polymer Mono Polymer Mono	- - - - - - - - - - - - - - -	Complet Oui Oui Oui
	Nomura Chemical Develosil C30-UG* Develosil C30RP Aqueous AR Develosil ODS UG Develosil ODS HG Develosil ODS MG Develosil PAHS Develosil 300 ODS-HG Develosil 300 C8-HG Develosil 300 C4-HG Develosil C8-UG * même phase que Develosil RP Aq				300 300 300 300 450 350 160 160 160 300	18 18 18 18 15 23 11 6 3 11	Mono Trifonct. Mono Trifonct. Difonct. Polymer Polymer Polymer Polymer Mono	1,8 1,8 3,1 3,4 1,6 4,5 3,8 4,2 4,8 4,4	Oui Oui Oui Oui Oui Non Oui Oui Oui
	Aqua C18 Aqua C18 Gemini C18	Spher 3, 5, 10 Spher 5, 10, 15 Spher 5, 10	125 200 110	1,05 1,15	320 215 375	15 11 14		-	Complet Complet TMS
	OCHIIII CTO	Sprice 3, 10	110	-	3/3	17			כויוו

Nom de la Phase	Taille des particules (µm)	Taille de pore (Å)	Volume de pore (mL/g)	Surface spécifique (m2/g)	Taux de carbone (%)	Greffage en surface	Densité de greffage (µmole/m2)	Recouvrement final
Phenomenex (Suite) Jupiter C4 Jupiter C5 Jupiter C18 Jupiter Proteo (C12) Luna Phenyl Hexyl Luna Silica (2) Luna C5 Luna C8 (2) Luna C18 (2) Luna CN Luna NH2 Luna SCX Prodigy ODS (2) Prodigy C8 Prodigi ODS (3) Prodigy Phenyl (PH-3) Synergi Fusion RP (C18) PolymerX RP-1 Synergi Max RP (C12) Synergi Polar RP (Phenyl) Ultracarb C8 Ultracarb ODS (30) Columbus C18	Spher 5, 10, 15 Spher 5, 10, 15 Spher 5, 10, 15 Spher 4, 10 Spher 3, 5, 10,15 Spher 3, 5, 10,15 Spher 3, 5, 10,15 Spher 3, 5, 10,15 Spher 3, 5, 10 Spher 3, 5, 10 Spher 3, 5, 10 Spher 5 Spher 5 Spher 5 Spher 5 Spher 2, 4, 10 Spher 2, 4, 10 Spher 2, 4, 10 Spher 2, 4, 10 Spher 5 Spher 2, 4, 10 Spher 2, 4, 10 Spher 5 Spher 5, 7, 10 Spher 5 Spher 5, 7, 5 Spher 5	300 300 300 90 100 100 100 100 100 100 150 150 150 100 80 80 80 80 80 60 90 60 110	- - 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,1 1,1 1,1	170 170 170 475 400 400 440 400 400 400 400 310 310 450 450 475 410 475 475 475 550 370 550 375	5 5,5 13,4 15 17,5 0 12,5 13,5 17,5 7 9,5 0,55 18,5 12,6 15,5 10 14 0 17 19 11 14 22 31	Mono Mono Polymer Mono Mono Mono	6,3 5,3 5,5 - 4,0 - 5,5 5,5 3,0 3,8 5,8 - 3,5 5,0 - - - 3,21 2,45 3,15 2,71 3,53 4,06	Oui
Polymer Labs PLRP-S 100 PLRP-S 300 PL-SAX 1000 PL-SAX 4000 PL-SCX 1000 PL-SCX 4000	Spher 5, 8, 10 Spher 8, 10 Spher 8, 10 Spher 8, 10 Spher 8, 10 Spher 8, 10	100 300 1000 4000 1000 4000	- - - -	550 - - - - -	0 0		0 0	- - - -
Regis Technologies Rexchrom ODS Rexchrom C8 Rexchrom Phenyl Rexchrom SAX Rexchrom SCX Rexchrom Nitrile Rexchrom Amino Val-U-Pak HP (economique) Rexchrom Base Workhorse II	Spher 3, 5 Spher 5 Spher 5 Spher 10	100 100 100 100 100 100 100 100 100 100	0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5	200 200 200 200 200 200 200 200 200 200			2,9 3,2 3,2 2,3 2,8 3,5 3,1	TMS TMS Non Non TMS Non Oui Complet
Restek Allure Aqueous C18 Allure C18 Allure Organic acids Allure Basix Allure PFP Propyl Ultra C18 Ultra Aqueous C18 Ultra C4 Ultra C4 Ultra C1 Ultra Phenyl Ultra Cyano Ultra Amino Ultra IBD Ultra PFP Pinnacle DB C18 Pinnacle DB C8 Pinnacle DB C8 Pinnacle DB Cyano	Spher 5 Spher 3, 5 Spher 5 Spher 5 Spher 5 Spher 5 Spher 5	60 60 60 60 100 100 100 100 100 100 100			- 27 - 12 17 20 - 12 9 5 10 8 2 12 7 11 6 4	Mono Mono	- - - - - - - - - - -	Non Oui Non Complet Complet Oui Non Oui

Nom de la Phase	Taille des particules (µm)	Taille de pore (Å)	Volume de pore (mL/g)	Surface spécifique (m2/g)	Taux de carbone (%)	Greffage en surface	Densité de greffage (µmole/m2)	Recouvrement final
Restek (Suite) Pinnacle II C18 Pinnacle II C8 Pinnacle II Phenyl Pinnacle II Cyano Pinnacle II AMino Pinnacle II Silice Viva C18	Spher 3, 5 Spher 3, 5 Spher 3, 5 Spher 3, 5 Spher 3, 5 Spher 5 Spher 5	110 110 110 110 110 110 300 300	- - - - -	- - - - -	13 7 6 4 2 -		- - - - -	Complet Complet Complet Complet
Wakosil II C18 RS Wakosil II C18 AR Wakosil II C18 HG Wakosil II C8 RS	Spher 3, 5 Spher 3, 5 Spher 3, 5 Spher 3, 5	120 120 120 120	1,1 1,1 1,1 1,1	350 350 350 350	17 20 15 10		- - -	Complet Complet Complet Complet
Shiseido chemicals								
Capcell Pak UG C18 Capcell Pak UG C18 Capcell Pak UG C8 Capcell Pak UG Phenyl Capcell Pak UG NH2 Capcell Pak UG CN Capcell Pak AG C18 Capcell Pak AG C8 Capcell Pak SG C18 Capcell Pak SG C8 Capcell Pak SG C8 Capcell Pak C18 ACR Capcell Pak C18 ACR Capcell Pak C18 ACR	Spher 5	120 80 120 120 80 120 120 120 120 120	1,0 0,9 1,0 1,0 0,9 1,0 1,0 1,0 1,0	300 400 300 400 300 400 300 300 300 300	15 18 10 5 15 5 15 10 14		1,5 1,4 2,8 6,9 0,9 3,8 2,6 3,9 2,6 3,9	VDP* VDP* VDP* VDP* VDP* VDP* VDP* VDP*
Superiorex ODS (hi load)	Spher 5	1	_	_	-		24	Oui
*VDP : Vapor Deposition Polymen	isation consiste à recouvri	r les silanols av	ant de faire le g	reffage.				
Shodex								
RSpak RP18-415 RSpak RP18-613 RSpak RP18-413 RSpak DE-613 RSpak DE-613 RSpak DS-613 RSpak DS-613 RSpak DS-613 RSpak DM-614 RSpak DC-613 RSpak DM-614 RSpak DC-613 RSpak NN (RP + SCX) RSpak JJ-50 (RP + SAX) Asahipak ODP-50 Asahipak ODP-40 Asahipak CDP-40 Asahipak CBP Asahipak C4P Asahipak C4P Asahipak C18F ODSpak C18F ODSpak C18F ODSpak C18P Supelco	Spher 6 Spher 3,5 Spher 3,5 Spher 6 Spher 4 Spher 6 Spher 10 Spher 10 Spher 5	450 100 100 100 100 100 100 200 100 200 - 250 250 250 250 250 100 100 100	- - - - - - - - - - - - - - - - - - -	-	- - - - - - - - 17 17 10 6 - 14 16 17	Mono Mono Mono	- - - - - - - - - - -	complet complet
Ascentis RP-Amide Ascentis C18 ABZ ABZ +plus Supelcosil LC-18-DB Supelcosil LC-8-DB Supelcosil LC-18-S Supelcosil LC-18-T Supelcosil LC-DP Supelcosil LC-CN Supelcosil LC-NH2	Spher 3, 5 Spher 3, 5 Spher 5 Spher 5 Spher 3, 5 Spher 3, 5 Spher 3, 5	100 100 120 120 120 120 120 120 120 120	- 0,6 0,6 0,6 0,6 0,6 0,6 0,6 0,6	450 450 170 170 170 170 170 170 170 170 170	19,5 25 12 12 11 6 11 12,3 6 4		- - 3,4 3,4 3,1 3,2 - - 2,4 3,5 5,1	Amide Oui
Supelcosil LC-SAX	Spher 5	120	0,6	170	-		-	-

Nom de la Phase	Taille des particules (µm)	Taille de pore (Å)	Volume de pore (mL/g)	Surface spécifique (m2/g)	Taux de carbone (%)	Greffage en surface	Densité de greffage (µmole/m2)	Recouvrement final
Supelco (Suite) Supelcosil LC-SCX Supelcosil LC-PAH Supelcosil LC-318 Supelcosil LC-308 Supelcosil LC-304 Supelcosil LC-304 Supelcosil LC-3DP Suplex pKB-100 Discovery C18 Discovery HS C18 Discovery RP-Amide C16 Discovery C8 Discovery CN Discovery HS F5 Discovery HS F5 Discovery Bio Wide Pore C18 Discovery Bio Wide Pore C8 Discovery Bio Wide Pore C5 Discovery Bio PolyMA-SCX Discovery Bio PolyMA-SCX Discovery Bio PolyMA-WAX Discovery Zr-PolyButaDiène Discovery Zr-Carbon Discovery Zr-Carbon Discovery Zr-CarbonC18	Spher 5 Spher 3, 5 Spher 3, 5, 10 Spher 3, 5, 5 Spher 5 Spher 5 Spher 5 Spher 5 Spher 3, 5	120 120 300 300 300 300 120 180 120 180 120 120 120 300 300 300 300 300 300 300 300	0,6 0,6 0,5 0,5 0,5 0,5 0,6 1,0 - 1,0 1,0 - - - - - - -	170 170 75 75 75 75 170 200 300 200 200 200 300 300 300 100 100 1- - 30 30 30 30	- - 6 3,5 2,7 4 12,5 12 20 11 7,5 4,5 12 9,2 5 3,5 - - -		- - 3,6 4,1 5,2 3,6 - 3,0 3,8 2,6 3,4 3,5 4 3,8 4 4 4 0,3meq/g 0,3meq/g	- Oui
Thermo-Hypersil Hypersil GOLD C18 Hypersil BDS C8 Hypersil BDS C18 Hypersil BDS Phenyl Hypersil BDS CN Hypersil C1 (SAS) Hypersil C8 (MOS) Hypersil C8-2 (MOS-2) Hypersil C18-2 (ODS-2) Hypersil C18-2 (ODS-2) Hypersil Phenyl Hypersil Phenyl-2 Hypersil CN (CPS) Hypersil CN-2 (CPS-2) Hypersil SAX Hypersil Green HAP Hypersil Green ENV Hypersil C4 (Butyl) Hypersil C8 (Octyl) Hypercarb Hyperprep HS C8 Hyperprep HS C18 Hypersil Elite C18 Hypurity Aduastar C18 Hypurity Advance C8 Aquasil C18 Betabasic C4 Betabasic CN Betasil C18 Betabasic CN Betasil C18 Biobasic C18 Biobasic C5 Biobasic C4 Prism RP	Spher 3, 5, 8 Spher 3, 5 Spher 3, 5 Spher 3, 5 Spher 3, 5 Spher 3, 5, 10 Spher 5, 10 Spher 5, 10 Spher 5, 5 Spher 5 Spher 5 Spher 5 Spher 8, 12, 15 Spher 5 Spher 3, 5 Spher 5	175 130 130 130 130 130 130 120 120 120 120 120 120 120 120 120 12	- 0,65 0,65 0,65 0,65 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7 0,7	220 170 170 170 170 170 170 170 170 170 17	10 7 11 5 4 2,5 6,5 6,5 10 11 5 5 4 4 1,9 2,5 13,5 7 2 3,3 100 0 16 16 15 13 - 12 13 7 6 7 5 20 12 9 5 4 12	Mono Mono Mono Mono Mono Mono Mono Mono	- 3,6 3,6 3,6 2,5 2,5 5,29 3,85 3,85 2,84 - 2,4 2,4 3,55 3,55 2,05 1,56 3,2 	Oui

Nom de la Phase	Taille des particules (µm)	Taille de pore (Å)	Volume de pore (mL/g)	Surface spécifique (m2/g)	Taux de carbone (%)	Greffage en surface	Densité de greffage (µmole/m2)	Recouvrement final
Tosoh TSK Phenyl 5PW TSK DEAE 5PW TSK SP 5PW TSK ODS 80Ts TSK ODS 80Tm TSK ODS 120 T TSK ODS 120 A TSK TMS 250 TSK Super ODS	Spher 10 Spher 10 Spher 10 Spher 5, 10, 20 Spher 5, 10, 20 Spher 5, 10, 20 Spher 5, 10 Spher 10 Spher 2	1000 1000 1000 80 80 120 120 250 110	- - - - - - -	- - - - - -	- 0,3meq/g 0,3meq/g 15 22 22 22	Polymer Mono Polymer Polymer Mono	- - - - - - -	Oui Oui Oui Oui Non Oui
Varian Abzelute ODS-DB Metasil C8 Metasil ODS Metasil Phenyl Metasil Aq Metasil Basic Omnispher C18 Polaris C18-A Polaris C8-A Polaris Amide C18 Polaris C8-Ether Polaris C18-Ether Polaris NH2 Polaris Si-A Taxil Pursuit C18 Pursuit C18 Pursuit Dipheryl	Spher 5 Spher 3, 5 Spher 3, 5 Spher 3, 5 Spher 3, 5, 10	80 80 80 80 100 100 110 180 180 180 180	0,5 0,5 0,5 0,5 1,0 1,0 0,9 1,0 1,0 1,0 1,0 1,0	220 220 220 220 320 320 320 320 180 180 180 180 180 180	16 6 12 3 - - 20 - - - - - -	Mono	3,87 2,51 2,52 1,08	Oui Oui Oui Oui Polaire Oui
Pursuit Diphenyl VWR Chromolith RP-18 EC	Spher 3, 5, 10 Monolithique	130	1,0	300	18		3,6	Oui
Chromolith RP-8 EC Chromolith Si Lichrosorb RP-select B Lichrosorb CN Lichrosorb Diol Lichrosorb Diol Lichrospher Si 60 Lichrospher Si 100 Lichrospher RP-8 Lichrospher RP-18 Lichrospher RP-18e Lichrospher CN Lichrospher NH2 Lichrospher Diol Lichrospher Diol Lichrospher Star RP-18e Purosphere Star RP-18e Purosphere Star RP-8e Purosphere Star Si Purosphere Star NH2	Monolithique Monolithique Irreg 5, 10 Irreg 5, 10 Irreg 5, 10 Irreg 5, 10 Spher 4, 5, 10 Spher 5 Spher 5 Spher 5 Spher 5 Spher 5	130 130 130 60 100 100 100 100 100 100 100	1,0 1,0 0,7 1,0 1,0 1,0 0,95 1,25 1,25 1,25 1,25 1,25 1,25 1,25 1,2	300 300 550 300 300 300 650 420 350 350 350 350 350 350 350 350 350 35	11 0 12 6,5 4,2 7,5 0 0 12,5 21,4 13 21,5 - 4,5 8,3 11,5 -		2,5 5,3 4,2 4,2 0 0 0 4,1 3,9 4,2 - - - 3,8 4,0 3,5 - -	Oui - Oui Non Non Non Non Non Oui Oui Oui Oui Oui
Waters Atlantis dC18 Atlantis HILIC µBondapak C18 µBondapak Phenyl µBondapak NH2 µBondapak CN µPorasil Silice Novapak C8 Novapak C18 Novapak Phenyl Novapak CN HP	Spher 5, 10 Spher 5, 10 Irreg 10 Irreg 10 Irreg 10 Irreg 10 Irreg 10 Spher 4 Spher 4 Spher 4 Spher 4	100 100 125 125 125 125 125 125 60 60 60	1,0 1,0 1,0 1,0 1,0 0,3 0,3 0,3 0,3	- 330 330 330 330 330 120 120 120 120	- 10 8 3,5 6 0 4 7 5		- 1,46 2,08 1,91 2,86 - 2,96 2,71 2,34 1,65	Complet - Oui Oui Non Oui Non Oui Oui Oui Oui Oui Oui

Nom de la Phase	Taille des particules (µm)	Taille de pore (Å)	Volume de pore (mL/g)	Surface spécifique (m2/g)	Taux de carbone (%)	Greffage en surface	Densité de greffage (µmole/m2)	Recouvrement final
Vaters (Suite)				(, 3)			(, , , , , , , , , , , , , , , , , , ,	
Novapak Silice	Spher 4	60	0,3	120	0		0	Non
Spherisorb Silice	Spher 3, 5, 10	80	0,5	200	0		0	Non
pherisorb ODS (1)	Spher 3, 5, 10	80	0,5	200	6,2	Mono	1,47	Non
pherisorb ODS (2)	Spher 3, 5, 10	80	0,5	200	11,5	Mono	2,98	Oui
pherisorb C8	Spher 3, 5, 10	80	0,5	200	5,75	Mono	3,12	Oui
		80						
pherisorb C6	Spher 3, 5, 10		0,5	200	4,7	Mono	3,36	Oui
oherisorb C1	Spher 3, 5, 10	80	0,5	200	2,15	Mono	2,97	Non
oherisorb Phenyl	Spher 3, 5, 10	80	0,5	200	2,5	Mono	1,72	Non
oherisorb CN	Spher 3, 5, 10	80	0,5	200	3,1	Mono	3,29	Non
herisorb NH2	Spher 3, 5, 10	80	0,5	200	1,9	Mono	2,64	Non
oherisorb SAX	Spher 5, 10	80	0,5	200	0,4mM/g	Mono	-	Non
oherisorb SCX	Spher 5, 10	80	0,5	200	- \	Mono	-	Non
unFire C18	Spher 3.5, 5, 10	, -		-	- \		-	Oui
ymmetry C18	Spher 3.5, 5	100	_	330	19		_	Oui
ymmetry C8	Spher 3.5, 5	100	_	330	12		_	Oui
mmetry300 C18	Spher 3.5, 5	300	_	-	8,5	\		Oui
,	1 ' ' '	300		_			-	Oui
ymmetry300 C4	Spher 3.5, 5		-		2,8		-	
ymmetryShield RP18	Spher 3.5, 5	100	-	-	17		-	Oui
ymmetryShield RP8	Spher 3.5, 5	100	-	-	15		-	Oui
Terra MS C18	Spher 3.5, 5, 10	125	-	-	15,5	\	-	Oui
Terra MS C8	Spher 3.5, 5, 10	125	-	-	12	\	-	Oui
Terra RP18	Spher 3.5, 5, 10	125	-	-	15	\	-	Oui
Terra RP8	Spher 3.5, 5, 10	125	-	-	13,5	\	-	Oui
Terra Phenyl	Spher 3.5, 5, 10	125	-	-	12	\	\ -	Oui
/hatman								
artisil Silice	Irreg 5, 10	85	-	-	-		- \	-
artisil ODS-3	Irreg 5, 10	85	-	-	10,5	Polymer	- \	Oui
artisil C8	Irreg 5, 10	85	-	-	8,5	Mono	- \	Oui
artisil SAX	Irreg 5, 10	85	-	-	0,85 N+		- \	-
artisil SCX	Irreg 5, 10	85	-	-	0,40 S		-	-
artisil PAC amino	Irreg 5, 10	85	-	-	0,85 N		-	-
artisil ODS	Irreg 5, 10	85	-	_	5	Polymer	-	Non
artisil ODS-2	Irreg 5, 10	85	_	_	16	Polymer	_ \	Non
artisphere C18	Spher 5	120	_	_	10	i orymici	_	Oui
artisphere C8	Sprice 5		_	_	6			Oui
	Sphor 5	120						
	Spher 5	120			-	Mono		
artisphere C18 RTF	Spher 5	120	-	-	22	Mono	-	-
artisphere C18 RTF artisphere C8 RTF	Spher 5 Spher 5	120 120		-	22 17	Mono Mono	-	-
artisphere C18 RTF artisphere C8 RTF	Spher 5	120	-		22		-	- - Polaire
artisphere C18 RTF artisphere C8 RTF nisep C8	Spher 5 Spher 5 Spher 5	120 120 100	-	-	22 17 16		-	- - Polaire
artisphere C18 RTF artisphere C8 RTF nisep C8 MC ydrosphere C18	Spher 5 Spher 5 Spher 5	120 120 100	-	340	22 17 16	Mono	-	- Polaire
artisphere C18 RTF artisphere C8 RTF nisep C8 MC ydrosphere C18 sphere ODS-H80	Spher 5 Spher 5 Spher 5 Spher 3, 5 Spher 4	120 120 100 120 80	-	340 510	22 17 16 12 22	Mono	-	Polaire Polaire Oui
artisphere C18 RTF artisphere C8 RTF nisep C8 MC ydrosphere C18	Spher 5 Spher 5 Spher 5	120 120 100	-	340	22 17 16 12 22 14	Mono	<u> </u>	- Polaire
artisphere C18 RTF artisphere C8 RTF hisep C8 MC ydrosphere C18 sphere ODS-H80 sphere ODS-M80	Spher 5 Spher 5 Spher 5 Spher 3, 5 Spher 4	120 120 100 120 80	- - -	340 510	22 17 16 12 22	Mono		Polaire Polaire Oui
artisphere C18 RTF artisphere C8 RTF hisep C8 MC /drosphere C18 sphere ODS-H80 sphere ODS-M80 sphere ODS-L80	Spher 5 Spher 5 Spher 5 Spher 3, 5 Spher 4 Spher 4 Spher 4	120 120 100 120 80 80	- - - -	340 510 510	22 17 16 12 22 14	Mono Mono Mono		Polaire Polaire Oui Oui
artisphere C18 RTF artisphere C8 RTF artisphere C8 AC AC Adrosphere C18 Aphere ODS-H80 Aphere ODS-M80 Aphere ODS-L80	Spher 5 Spher 5 Spher 5 Spher 3, 5 Spher 4 Spher 4 Spher 4 Spher 4 Spher 3, 5, 7, 10	120 120 100 120 80 80 80 120	- - - - - - 1,1	340 510 510 510 335	22 17 16 12 22 14 9	Mono Mono Mono Mono	- - - -	Polaire Polaire Oui Oui Oui Oui Oui
rtisphere C18 RTF rtisphere C8 RTF nisep C8 AC rdrosphere C18 phere ODS-H80 phere ODS-M80 phere ODS-L80 OS-A OS-A	Spher 5 Spher 5 Spher 5 Spher 3, 5 Spher 4 Spher 4 Spher 4 Spher 4 Spher 3, 5, 7, 10 Spher 3, 5	120 120 100 120 80 80 80 120 200	- - - - - - 1,1	340 510 510 510 335 175	22 17 16 12 22 14 9	Mono Mono Mono Mono Mono Mono		Polaire Polaire Oui Oui Oui Oui Oui Oui Oui
AC vdrosphere C18 RTF vdrosphere C18 RTF vdrosphere C18 rphere ODS-H80 rphere ODS-H80 rphere ODS-L80 OS-A OS-A OS-A	Spher 5 Spher 5 Spher 5 Spher 3, 5 Spher 4 Spher 4 Spher 4 Spher 4 Spher 3, 5, 7, 10 Spher 3, 5 Spher 3, 5	120 120 100 120 80 80 80 120 200 390	- - - - - - 1,1 1,0	340 510 510 510 335 175 100	22 17 16 12 22 14 9 17 12 6	Mono Mono Mono Mono Mono Mono		Polaire Polaire Oui
artisphere C18 RTF artisphere C8 RTF artisphere C8 RTF artisphere C8 AC AC Adrosphere C18 Aphere ODS-H80 Aphere ODS-H80 Aphere ODS-L80 Apher	Spher 5 Spher 5 Spher 5 Spher 3, 5 Spher 4 Spher 4 Spher 4 Spher 4 Spher 3, 5, 7, 10 Spher 3, 5 Spher 3, 5 Spher 5	120 120 100 120 80 80 80 120 200 390 120	- - - - - 1,1 1,0 0,9	340 510 510 510 335 175 100 335	22 17 16 12 22 14 9 17 12 6	Mono Mono Mono Mono Mono Mono Mono Mono		Polaire Polaire Oui Oui Oui Oui Oui Oui Oui Non
artisphere C18 RTF artisphere C8 RTF artisphere C8 RTF hisep C8 AC AC ACACOMORIO CONTRACTOR ACACOMORIO CONTRAC	Spher 5 Spher 5 Spher 5 Spher 3, 5 Spher 4 Spher 4 Spher 4 Spher 4 Spher 3, 5, 7, 10 Spher 3, 5 Spher 3, 5 Spher 5 Spher 5 Spher 3, 5, 10, 15	120 120 100 120 80 80 80 120 200 390 120 120	- - - - - 1,1 1,0 0,9 1,1 1,1	340 510 510 510 335 175 100 335 335	22 17 16 12 22 14 9 17 12 6 17	Mono Mono Mono Mono Mono Mono Mono Mono	- -	Polaire Polaire Oui Oui Oui Oui Oui Oui Oui Non Oui
artisphere C18 RTF artisphere C8 RTF artisphere C8 RTF artisphere C8 AC AC Adrosphere C18 AC	Spher 5 Spher 5 Spher 5 Spher 3, 5 Spher 4 Spher 4 Spher 4 Spher 3, 5, 7, 10 Spher 3, 5 Spher 3, 5 Spher 5 Spher 3, 5, 7, 10 Spher 3, 5, 7, 10	120 120 100 120 80 80 80 120 200 390 120 120 120	- - - - - 1,1 1,0 0,9 1,1 1,1	340 510 510 510 335 175 100 335 335 335 300	22 17 16 12 22 14 9 17 12 6 17 17	Mono Mono Mono Mono Mono Mono Mono Mono		Polaire Polaire Oui Oui Oui Oui Oui Oui Oui Polaire
artisphere C18 RTF artisphere C8 RTF artisphere C8 RTF artisphere C8 AC AC AC AC AC AC AC AC AC AC AC AC AC	Spher 5 Spher 5 Spher 5 Spher 5 Spher 3, 5 Spher 4 Spher 4 Spher 4 Spher 3, 5, 7, 10 Spher 3, 5 Spher 5 Spher 5 Spher 3, 5, 7, 10 Spher 3, 5, 7, 10 Spher 3, 5, 7, 10 Spher 3, 5, 7, 10	120 120 100 120 80 80 80 120 200 390 120 120 120 120		340 510 510 510 335 175 100 335 335 335 300 200	22 17 16 12 22 14 9 17 12 6 17 17 14 11	Mono Mono Mono Mono Mono Mono Mono Mono		Polaire Oui Oui Oui Oui Oui Oui Oui Polaire Polaire Polaire
artisphere C18 RTF artisphere C8 RTF artisphere C8 RTF artisphere C8 AC AC AC AC AC AC AC AC AC AC AC AC AC	Spher 5 Spher 5 Spher 5 Spher 5 Spher 3, 5 Spher 4 Spher 4 Spher 4 Spher 3, 5, 7, 10 Spher 3, 5 Spher 5 Spher 5 Spher 3, 5, 7, 10 Spher 3, 5, 10	120 120 100 120 80 80 80 120 200 300 120 120 120 120 120		340 510 510 510 335 175 100 335 335 335 300 200 340	22 17 16 12 22 14 9 17 12 6 17 17 14 11 17	Mono Mono Mono Mono Mono Mono Mono Mono	-	Polaire Polaire Oui Oui Oui Oui Oui Oui Oui Polaire Polaire Polaire Polaire Oui
artisphere C18 RTF artisphere C8 RTF artisphere C8 RTF artisphere C8 AC AC AC AC AC AC AC AC AC AC AC AC AC	Spher 5 Spher 5 Spher 5 Spher 5 Spher 3, 5 Spher 4 Spher 4 Spher 4 Spher 3, 5, 7, 10 Spher 3, 5 Spher 5 Spher 5 Spher 3, 5, 7, 10 Spher 3, 5, 7, 10 Spher 3, 5, 7, 10 Spher 3, 5, 7, 10	120 120 100 120 80 80 80 120 200 390 120 120 120 120		340 510 510 510 335 175 100 335 335 335 300 200	22 17 16 12 22 14 9 17 12 6 17 17 14 11	Mono Mono Mono Mono Mono Mono Mono Mono	-	Polaire Oui Oui Oui Oui Oui Oui Oui Polaire Polaire Polaire Polaire Polaire Oui Oui
artisphere C18 RTF artisphere C8 RTF nisep C8 MC ydrosphere C18 sphere ODS-H80	Spher 5 Spher 5 Spher 5 Spher 5 Spher 3, 5 Spher 4 Spher 4 Spher 4 Spher 3, 5, 7, 10 Spher 3, 5 Spher 5 Spher 5 Spher 3, 5, 7, 10 Spher 3, 5, 10	120 120 100 120 80 80 80 120 200 300 120 120 120 120 120		340 510 510 510 335 175 100 335 335 335 300 200 340	22 17 16 12 22 14 9 17 12 6 17 17 14 11 17	Mono Mono Mono Mono Mono Mono Mono Mono	-	Polaire Oui Oui Oui Oui Oui Oui Non Oui Polaire Polaire Polaire Oui
artisphere C18 RTF artisphere C8 RTF nisep C8 MC ydrosphere C18 sphere ODS-H80 sphere ODS-L80 DS-A DS-A DS-A DS-A DS-A DS-A DS-A DS-A	Spher 5 Spher 5 Spher 5 Spher 5 Spher 5 Spher 4 Spher 4 Spher 4 Spher 3, 5, 7, 10 Spher 3, 5 Spher 3, 5 Spher 5 Spher 5 Spher 3, 5, 7, 10	120 120 100 120 80 80 80 120 200 300 120 120 120 120 120		340 510 510 510 335 175 100 335 335 335 300 200 340 340	22 17 16 12 22 14 9 17 12 6 17 17 14 11 17 11	Mono Mono Mono Mono Mono Mono Mono Mono		Polaire Oui Oui Oui Oui Oui Oui Oui Polaire Polaire Polaire Polaire Polaire Oui Oui
artisphere C18 RTF artisphere C8 RTF nisep C8 MC ydrosphere C18 sphere ODS-H80 sphere ODS-L80 DS-A DS-A DS-A DS-A DS-A DS-A DS-A DS-A	Spher 5 Spher 5 Spher 5 Spher 5 Spher 5 Spher 4 Spher 4 Spher 4 Spher 3, 5, 7, 10 Spher 3, 5 Spher 3, 5 Spher 5 Spher 5 Spher 3, 5, 7, 10 Spher 3, 5, 5 Spher 3, 5 Spher 3, 5 Spher 3, 5	120 120 100 120 80 80 80 120 200 300 120 120 120 120 120 120 120 80		340 510 510 510 335 175 100 335 335 335 300 200 340 340 340	22 17 16 12 22 14 9 17 12 6 17 17 14 11 17 11 8	Mono Mono Mono Mono Mono Mono Mono Mono		Polaire Oui Oui Oui Oui Oui Oui Non Oui Polaire Polaire Polaire Oui

26 A.I.T FRANCE

- Purification et concentration de composés dans différentes matrices
- Améliore et simplifie les séparations des composés difficiles
- · Augmente la durée de vie des colonnes HPLC
- Abaisse les limites de détections

La gamme SMART-BOND, marque propriété de la société AIT, est produite en collaboration avec le leader mondial de la SPE. Les cartouches SMART BOND assurent une reproductibilité absolue et permet aux utilisateurs de développer des méthodes infaillibles. La gamme de produit est très étendue puisqu'ils disposent 35 phases greffées pour les secteurs de l'industrie pharmaceutique, l'environnement, l'agriculture et la biotechnologie.

CHOIX DES PHASES SPE:

Phases	Taux de carbone	Capacité échange ionique	Applications
	Phase Inverse	(Hydrophobe)	
C1	-	-	Extraction des composés très hydrophobes ou de poids moléculaire important
C2	6,6	-	•
C3	7,6	-	• •
C4	8,5	-	• •
C5	9,5		
C6	11	-	
C8 C10	11,1	•	
C18	15,7	• • •	Extraction de la plupart des compacés hydrophoba et descalage
C18	21,7 18	-	Extraction de la plupart des composés hydrophobe et dessalage
C18	14	-	
C18 / OH	• I# *		
C20	24,3	_	Extraction des petites molécules ou des composés les moins hydrophobes
C30	26	_	Extraction des petites molecules ou des composes les moins hydrophoses
Cyclohexyl	11,6	-	Rétention des composés phénoliques
Phenyl	11	_	Rétention des composés polaires
SDB	-	-	Extraction des HAP, Phénols
	Phase Normale	(Hydronbile)	
Silice	Phase Normale	(Hydrophile)	Purification des composés polaires
Diol	8	_	Extraction des phospholipides
Cyanopropyl	6,9		Extraction des phospholipides Extraction des stéroïdes
Fluorisil	-	_	Extraction des Steroides
Alumine Acide,	-	-	Extraction des composés polaires
Neutre et Basique			
Carbone	-	-	Extraction des composés polaires
	Phase Mixte (R	' P et Echange d'	ion)
NH2 + C8	12,3	0,163	Pour acide fort et produits hydrophobes
SAX + C8	13,6	0,160	Pour acide faible et produits hydrophobes
SCX + C8	12,3	0,072	Pour base faible et produits hydrophobes
CN + C8	14,6	0,163	Pours composés polaires et hydrophobes
	Phase d'échan	geuse d'ion	
SAX	8,4	0,25	Extraction des acides et produits ioniques
SCX	15	0,32	Extraction des bases et produits ioniques

PRINCIPE : PROTOCOLE D'UNE EXTRACTION LIQUIDE / SOLIDE

1. Prétraitement de l'échantillon

Un prétraitement implique une filtration préalable de l'échantillon s'il est liquide ou une dissolution suivie d'une filtration s'il est solide.

- 1) S'assurer d'une dilution correcte pour diminuer la viscosité de l'échantillon et avoir une bonne rétention.
- 2) Ajuster le pH (le soluté doit être libre dans la solution)
- 3) Eliminer les particules en suspension (filtration)

2. Solvatation et équilibration de la colonne

Le processus de solvatation consiste à conditionner la cartouche SPE avec un solvant organique afin de mouiller la phase pour assurer une intéraction optimale avec la matrice de l'échantillon (volume de solvatation entre 0,5 et 1mL/100mg de phase).

La pré-équilibration consiste à appliquer à la colonne un solvant le plus proche possible de l'échantillon. Exemple : si l'échantillon est dans un solvant organique, la colonne doit être équilibrée avec le même solvant.

3. Dépôt de l'échantillon

Il est important de définir les débits optimaux pour votre extraction (NB). L'application doit se faire dans un temps suffisamment long pour que l'échantillon puisse traverser la colonne et réagir avec la phase. En Effet, un débit trop rapide affectera le rendement et entraînera une moins bonne purification.

4. Lavage

Le But est d'éluer de façon sélective les composés indésirables sans élution du soluté. Une ou plusieurs étapes peuvent être nécessaires. Dans le cas d'une phase non polaire ou échangeuses d'ions, le contrôle du pH s'avère indispensable pour assurer une bonne reproductibilité.

5. Elution

Elle est réalisée en lavant la colonne avec un solvant adéquat permettant d'éluer le soluté. Le choix du solvant sera influencé par sa facilité d'évaporation et sa compatibilité avec la technique analytique qui suit l'extraction. Le volume d'élution minimum usuel est de 250µL pour 100mg de phase.

6. Séchage

MÉTHODES STANDARD D'EXTRACTION SELON LES MODES D'INTERACTIONS :

Phases	Phases inverse C18, C8, CN, Ph, SDB	Phases normales Silice, Diol, NH2, FL, CN	Echange d'ions SAX, SCX, NH2
GÉNÉRALITÉS	En général, les composés polaires sont retenus par ces phases et sont élués par un système de solvant peu polaires	Les composés polaires sont préférentiel- lement retenus sur ces phases et sont élués par des systèmes de solvants po- laires	Les composés anioniques ou cationiques sont retenus sur ces phases et sont élués en contrôlant le pH et la force ionique du solvant
CONDITIONNEMENT	Solvatation avec du CH3CN, EtOH ou MeOH Rinçage de la colonne avec de l'eau ou tampon avec même pH et force ionique que l'échantillon	Solvatation au MeOH (pas obligatoire) Solvatation de la colonne avec du solvant apolaires (hexane ou chloroforme)	Solvatation au MeOH, EtOH, Propanol ou CH3CN Equilibration avec un tampon de faible force ionique et pH identique à l'échantillon
DÉPÔT DE L'ÉCHANTILLON	Appliquer l'échantillon, dilué dans un solvant aqueux, et laisser percoler sur la colonne	Appliquer l'échantillon, dilué dans un solvant apolaire ou peu polaire, et laisser percoler	Appliquer l'échantillon, dilué dans un tam- pon (voir ci-dessus) et laisser percoler
LAVAGE DE LA COLONNE	Rincer avec un mélange de solvant po- laire (MeOH) à 5 - 10% dans l'eau	Rincer avec un solvant apolaire (Hexane avec 1% de THF, Acetate d'éthyl, acétone ou isopropyl alcool)	Optimiser le solvant pour éluer les in- terférences en gardant le pH du soluté. (mélange tampon méthanol)
ELUTION	Volume minimal d'élution 250µL/100mg d'adsorbant. Eluer avec le MeOH ou CH3CN. Pour les composés basique, on peut utiliser un mélange aqueux/ organique à un pH contrôlé.	Volume minimal d'élution 250µL/100mg d'adsorbant. Eluer avec un solvant organique semi-polaire (Hexane avec 10% THF, acétone ou acétonitrile)	 Neutraliser la charge de la phase. Augmenter la force ionique de l'éluant. Echange d'anion : Hexane + 1% acide acétique glacial Echange de cation : Methanol + 5% NH3

VOLUMES D'ÉLUTION ET MASSE D'ÉCHANTILLON:

Masse de phase silice	Volume d'élution	Masse d'échantillon	Masse de phase Polymèrique	Volume d'élution	Masse d'échantillon
100mg	1mL	5mg	100mg	1,5mL	10-15mg
200mg	2mL	10mg	200mg	3mL	25mg
500mg	3mL	25mg	500mg	6mL	50mg
1000mg	6mL	50mg	1000mg	10mL	100mg

Pour tout autre question sur la SPE ou pour avoir des applications, contactez la société AIT.

POUR COMMANDER:

Cartouche SPE Volume Quantité par boîte	100mg 1mL 100 unités	200mg 3mL 50 unités	500mg 3mL 50 unités	500mg 6mL 30 unités	1000mg 6mL 30 unités	1000mg 12mL 20 unités
C18	PE1811	PE1832	PE1835	PE1865	PE18610	PE181210
C18 non endcapped	PE18N11	PE18N32	PE18N35	PE18N65	PE18N610	PE18N1210
SDVB	PEDVB11	PEDVB32	PEDVB35	PEDVB65	PEDVB610	PEDVB1210
	PEPH11	PEPH32	PEPH35	REPH65	PEPH610	PEPH1210
Phényl	. =			- (
Cyclohexyl	PECLH11	PECLH32	PECLH35	PECLH65	PECLH610	PECLH1210
C4	PE0411	PE0432	PE0435	PE <mark>0</mark> 465	PE04610	PE041210
C2	PE0211	PE0232	PE0235	PE02 <mark>6</mark> 5	PE02610	PE021210
C1	PE0111	PE0132	PE0135	PE0165	PE01610	PE011210
CN	PECN11	PECN32	PECN35	PECN65	PECN610	PECN1210
Silice	PESI11	PESI32	PESI35	PESI65	PESI610	PESI1210
Fluorisil	PEFL11	PEFL32	PEFL35	PEFL65	PEFL610	PEFL1210
Alumine neutre	PEALN11	PEALN32	PEALN35	PEALN65	PEALN610	PEALN1210
Alumine Acide	PEALA11	PEALA32	PEALA35	PEALA65	PEALA610	PEALA1210
Alumine Basique	PEALB11	PEALB32	PEALB35	PEALB65	PEALB610	PEALB1210
Diol	PEOH11	PEOH32	PEOH35	PEOH65	PEOH610	PEOH1210
NH2	PENH311	PENH32	PENH35	PENH65	PENH610	PENH1210
SAX	PESA11	PESA32	PESA35	PESA65	PESA610	PESA1210
SCX	PESC11	PESC32	PESC35	PESC65	PESC610	PESC1210
NH2 + C8	PE8NH11	PE8NH32	PE8NH35	PE8NH65	PE8NH610	PE8NH1210
CN + C8	PE8CN11	PE8CN32	PE8CN35	PE8CN65	PE8CN610	PE8CN1210
SAX + C8	PE8SA11	PE8SA32	PE8SA35	PE8SA65	PE8SA610	PE8SA1210
SCX + C8	PE8SC11	PE8SC32	PE8SC35	PE8SC65	PE8SC610	PE8SC1210

APPLICATIONS SPÉCIFIQUES :

Composés :

Principes actifs neutres, acides et basiques THC (Tetra Hydroxy Canabinol) GHB (Acide Gamma Hydroxybutyrique) Composés très polaires hydrosolubles Environnement (HAP, pesticides...) Clean Screen DAU (C8 + NH2)

Clean Screen THC (C8 + SAX)

Clean Screen GHB

Clean Up Carbone graphite Sequant SPE-HILIC

Enviro-Clean

CARTOUCHES SEP-CART:

l						
Cartouches SEP-CART	Quant	ité par boîtes	Masse de 300mg	Masse de 600mg		
C18	50		20926S	20942S		
C8	50		20950S	20960S		
Phenyl	50		22003S	-		
Silice	50		20970S	20978S		
SAX	50		-	21905S		
SCX	50		-	21900S		
C2	50		210060S	-		
CN	50		210030S	-		
Diol	50		210080S	-		
NH2	50		210040S	-		
Fluorisil	50		210050S	-		

MICROPLAQUES À BASE DE SILICE :

Compatibilité avec les robots suivants :

- Beckman Coulter Biomek 2000
- Zinsser Analytic Speedy System
- Packard MultiPROBE
- TomTec Quadra 96
- Gilson ASPEC
- Tecan

Pour Commander:

Microplaques d'extraction classique de 1,2mL

Référence	Description	Quantité/boîte
6011	C2-SD (Ethyl)	12
6014	C8-SD (Octyl)	12
6015	C18-SD (Octadecyl)	12
6030	MPC-SD (C8 + SCX)	12

Référence	Description	Quantité/boîte
6315	C18-SD (Ethyl)	12

PLAQUES DE PRÉCIPITATION DE PROTÉINES

- Gain de temps et d'argent par rapport aux méthodes classiques
- Compatible avec tous systèmes
- Supprime l'étape de centrifugation
- Volume des puits de 1,2 et 2,5mL

Pour Commander:

Plaques de précipitation et filtration

Référence	Description	Quantité	/boîte
6060	Plaques de filtration PPT Volume	de 1,2mL	12
6360	Plaques de filtration PPT Volume	de 2,5mL	12

Spécifications techniques:

Polypropylène
200µL
800µL
12 à 2µm
> 5 en Hg

MICROPLAQUES EN RÉSINE UNIVERSELLE :

- Excellente rétention d'une large gamme de composés pharmaceutiques acides, neutre et basique.
- Retiens les composés très polaires
- Méthode d'extraction simple et unique
- Volumes d'activation et d'élution faibles pour une sensibilité maximum
- Ne nécessite pas de vide avec le méthanol
- Résiste au séchage de la phase
- · Automatisation à haut débit facile

Spécifications techniques :

Phase:	PDVB + Site polaire
Membrane du disque :	PTFE
Volume de phase :	18µL
Taille des particules :	30-60µm
Masse de phase :	8mg
Stabilité au pH :	2 – 12
Diamètre des puits :	5,5mm
Epaisseur des disques	0,75mm

Pour commander:

Microplaques en résine universelle

Référence	Description	Quantité/boîte
6045	Plaque en résine universelle	Volume de 1,2mL 12
6345	Plaque en résine universelle	Volume de 2,5mL 12

La société AIT propose toute la gamme des produits 3M Empore :

TEKNOKROMA vacuum manifolds simplify SPE sample processing. These manifolds permit consistent extraction and filtration results. Analyst can save time, since these manifolds allow simultaneous multiple sample processing. The manifolds yield consistent extraction, elution and filtration results for up to 24 columns, cartridges or 25 mm syringe filters. Filters should not be attached to the vacuum manifold port prior to elution. Filters will air-lock and prevent fluid passage if used during column conditioning, sample application, or column wash. Using filters during the final elution step will ensure a clean sample for injection. Parallel processing of this kind greatly reduces the time required to prep multiple samples. The manifolds consist of a clear glass chamber to which vacuum is applied to draw a sample through on SPE column, cartridge, or disk.

Adjustable racks placed in the glass vacuum chamber will accommodate a variety of sample collection vessels, including test tubes, autosamplers, vials, volumetric flasks, and Erlenmeyer flasks. Eluants are deposited directly into the collection vessel of choice via polypropylene, optional stainless steel, or teflon needles.

Vacuum manifolds for SPE sample preparation, filtration, and elution are available in 12, 16, and 24 port configurations.

References	Description
References	Description
TR-004012	12 Port Vacuum Manifold, Complete Set
TR-004416	16 Port Vacuum Manifold, Complete Set
TR-004824	24 Port Vacuum Manifold, Complete Set

Drying Attachments

Drying attachments are available for the 12 and 24 port manifolds, which will direct the flow of air or nitrogen into the collection vessels to concentrate eluants, prior to further analysis Drying attachments can be connected, via adapters, to SPE columns or cartridges in order to dry the column or cartridge prior to final elution.

	\	
References	Description	
TR-004027	12 Positions Drying Attachme	ent
TR-004431	16 Positions Drying Attachme	ent
TR-004839	24 Positions Drying Attachme	ent

Description	12 Positionsi	PK	16 Positions	Pk	24 Positionsi	PK
Gass Chamber	TR-004013	1	TR-004417	1	TR-004825	1
Cover, gasket & 12 stopcodks	TR-004014	1	TR-004418	1	TR-004826	1
Gaskets	TR-004015	2	TR-004419	2	TR-004827	2
Vacuum gauge, valve, &glass chamber	TR-004016	1	TR-004420	1	TR-004828	1
Needles- Polyprophylene	TR-004017	12	TR-004421	16	TR-004829	24
Needles- Stainless Steel	TR-004018	12	TR-004422	16	TR-004830	24
Callection Radk-shelves, legs, chips &posts	TR-004019	1	TR-004423	1	TR-004831	1
Plate- 13 mm	TR-004020	1	TR-004424	1	TR-004832	1
Plate- volumetric flask	TR-004021	1				
Plate- 16 mm test tube	TR-004022	1	TR-004426	1	TR-004834	1
Plate- autosampler vial	TR-004023	1				
Plate- dimple	TR-004024	1	TR-004428	1	TR-004836	1
Plate- base	TR-004025	1	TR-004429	1	TR-004837	1
Stopaaks	TR-004026	12	TR-004430	16	TR-004838	24

32

La Société AIT a développé de nouvelles précolonnes 100 % compatibles avec le système de précolonne Security Guard de PHENOMENEX.

Plus économique et plus robuste, vous bénéficiez d'une seule référence pour les 3 diamètres analytiques les plus utilisés, c'est-à-dire 2 - 3 et 4,6 mm.

Vous pouvez également avec ces nouvelles précolonnes vérifier l'état de propreté de vos précolonnes.

- **√** Robuste
- √ 50 % plus économique
- √ Compatible avec le système
- √ Security Guard de Phenomenex

Kit Monture de précolonne AIT Référence : HOL-KIT-P01 Prix unitaire HT : 90,00 €

POUR COMMANDER: PRECOLONNE AIT

Support	Dimension	Référence	Prix HT / 10
C18	6 x 2,5 mm	PC-C18	95,00€
C8	6 x 2,5 mm	PC-C8	95,00€
C1	.6 x 2,5 mm	PC-C1	95,00€
Silice	6 x 2,5 mm	PC-SI	95,00€
NH2	6 x 2,5 mm	PC-NH2	95,00€
CN	6 x 2,5 mm	PC-CN	95,00€
Phenyl	6 x 2,5 mm	PC-PH	95,00€
scx	6 x 2,5 mm	PC-SCX	95,00€
SAX	6 x 2,5 mm	PC-SAX	95,00€
RP-1	6 x 2,5 mm	PC-RP1	95,00€
300-C18	6 x 2,5 mm	PC-300C18	95,00€
300-C4	6 x 2,5 mm	PC-300C4	95,00€
Carbo H+	6 x 2,5 mm	PC-H+	95,00€
Carbo Ag+	6 x 2,5 mm	PC-AG+	95,00€
Pb2+	6 x 2,5 mm	PC-PB++	95,00€
Ca2+	6 x 2,5 mm	PC-CA++	95,00€